Skip to main content

Particle Plasmons

  • Chapter
  • First Online:
Nano and Quantum Optics

Part of the book series: Graduate Texts in Physics ((GTP))

Abstract

In the last chapter we have discussed surface plasmons. These are coherent charge oscillations at the interface between a metal and a dielectric, which can be excited optically and propagate along the interface. They come along with evanescent electromagnetic fields, which decay exponentially when moving away from the interface. In this chapter we analyze metallic nanoparticles embedded in dielectrics and show that corresponding excitations exist there, which we will denote as particle plasmons. We start our discussion with nanoparticles much smaller than the wavelength of light, where the quasistatic approximation can be employed, and generalize the results later for larger particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The resulting condition ε 1 = −ε 2( + 1) can neither be fulfilled for dielectric particles with ε 1 > 0, ε 2 > 0 nor for metallic particles with a permittivity that has a non-zero imaginary part.

  2. 2.

    With this choice the eigenvalues are bound to values in the range − 1∕2 ≤ λ k ≤ 0. In the literature one often rescales the eigenvalues such that they lie in the range of − 1 ≤ λ k ≤ 0 [61, 62], but we here prefer to stay with the choice of Eq. (9.28).

References

  1. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1999)

    MATH  Google Scholar 

  2. P.B. Johnson, R.W. Christy, Optical constants of the noble metals. Phys. Rev. B 6, 4370 (1972)

    Article  ADS  Google Scholar 

  3. H. Atwater, The promise of plasmonics. Sci. Am. 296(4), 56 (2007)

    Article  Google Scholar 

  4. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light (Wiley, New York, 1983)

    Google Scholar 

  5. F.J. García de Abajo, J. Aizpurua, Numerical simulation of electron energy loss near inhomogeneous dielectrics. Phys. Rev. B 56, 15873 (1997)

    Article  ADS  Google Scholar 

  6. G. Boudarham, M. Kociak, Modal decompositions of the local electromagnetic density of states and spatially resolved electron energy loss probability in terms of geometric modes. Phys. Rev. B 85, 245447 (2012)

    Article  ADS  Google Scholar 

  7. F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, J.R. Krenn, Dark plasmonic breathing modes in silver nanodisks. Nano Lett. 12, 5780 (2012)

    Article  ADS  Google Scholar 

  8. M.I. Stockman, Nanoplasmonics: past, present, and glimpse into future. Opt. Express 19, 22029 (2011)

    Article  ADS  Google Scholar 

  9. I.D. Mayergoyz, D.R. Fredkin, Z. Zhang, Electrostatic (plasmon) resonances in nanoparticles. Phys. Rev. B 72, 155412 (2005)

    Article  ADS  Google Scholar 

  10. P. Zijlstra, P.M. Paulo, M. Orrit, Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nat. Nanotechnol. 7, 379 (2012)

    Article  ADS  Google Scholar 

  11. J. Becker, A. Trügler, A. Jakab, U. Hohenester, C. Sönnichsen, The optimal aspect ratio of gold nanorods for plasmonic bio-sensing. Plasmonics 5, 161 (2010)

    Article  Google Scholar 

  12. E. Prodan, C. Radloff, N.J. Halas, P. Nordlander, Hybridization model for the plasmon response of complex nanostructures. Science 302, 419 (2003)

    Article  ADS  Google Scholar 

  13. A. Aubry, D. Yuan Lei, A.I. Fernandez-Dominguez, Y. Sonnefraud, S.A. Maier, J.B. Pendry, Plasmonic light-harvesting devices over the whole visible spectrum. Nano Lett. 10, 2574 (2010)

    Article  ADS  Google Scholar 

  14. R.C. McPhedran, W.T. Perrins, Electrostatic and optical resonances of cylinder pairs. Appl. Phys. 24, 311 (1981)

    Article  ADS  Google Scholar 

  15. A. Aubry, D. Yuan Lei, S.A. Maier, J.B. Pendry, Conformal transformation applied to plasmonics beyond the quasistatic limit. Phys. Rev. B 82, 205109 (2010)

    Article  ADS  Google Scholar 

  16. D.Y. Lei, A. Aubry, S.A. Maier, J.B. Pendry, Broadband nano-focusing of light using kissing nanowires. New. J. Phys. 12, 093030 (2010)

    Article  ADS  Google Scholar 

  17. W. Zhu, R. Esteban, A.G. Borisov, J.J. Baumberg, P. Nordlander, H.J. Lezec, J. Aizpurua, K.B. Crozier, Quantum mechanical effects in plasmonic structures with subnanometre gaps. Nat. Commun. 7, 11495 (2016)

    Article  ADS  Google Scholar 

  18. G. Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 330, 377 (1908)

    Article  Google Scholar 

  19. Y. Chang, R. Harrington, A surface formulation for characteristic modes of material bodies. IEEE Trans. Antennas Propag. 25(6), 789–795 (1977)

    Article  ADS  Google Scholar 

  20. T.K. Wu, L.L. Tsai, Scattering from arbitrarily-shaped lossy dielectric bodies of revolution. Radio Sci. 12(5), 709–718 (1977)

    Article  ADS  Google Scholar 

  21. P.T. Leung, S.Y. Liu, K. Young, Completeness and orthogonality of quasinormal modes in leaky optical cavities. Phys. Rev. A 49, 3057 (1994)

    Article  ADS  Google Scholar 

  22. C. Sauvan, J.P. Hugonin, I.S. Maksymov, P. Lalanne, Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators. Phys. Rev. Lett. 110, 237401 (2013)

    Article  ADS  Google Scholar 

  23. F. Ouyang, M. Isaacson, Surface plasmon excitation of objects with arbitrary shape and dielectric constant. Philos. Mag. B 60, 481 (1989)

    Article  ADS  Google Scholar 

  24. J. Petersen, J. Volz, A. Rauschenbeutel, Chiral nanophotonic waveguide interface based on spin-orbit interaction of light. Science 346, 67 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hohenester, U. (2020). Particle Plasmons. In: Nano and Quantum Optics. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-30504-8_9

Download citation

Publish with us

Policies and ethics