Skip to main content

Graph Convolutional Networks Improve the Prediction of Cancer Driver Genes

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2019: Workshop and Special Sessions (ICANN 2019)

Abstract

Despite the vast increase of high-throughput molecular data, the prediction of important disease genes and the underlying molecular mechanisms of multi-factorial diseases remains a challenging task. In this work we use a powerful deep learning classifier, based on Graph Convolutional Networks (GCNs) to tackle the task of cancer gene prediction across different cancer types. Compared to previous cancer gene prediction methods, our GCN-based model is able to combine several heterogeneous omics data types with a graph representation of the data into a single predictive model and learn abstract features from both data types. The graph formalizes relations between genes which work together in regulatory cellular pathways. GCNs outperform other state-of-the-art methods, such as network propagation algorithms and graph attention networks in the prediction of cancer genes. Furthermore, they demonstrate that including the interaction network topology greatly helps to characterize novel cancer genes, as well as entire disease modules. In this work, we go one step forward and enable the interpretation of our deep learning model to answer the following question: what is the molecular cause underlying the prediction of a disease genes and are there differences across samples?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/marcoancona/DeepExplain.

References

  1. Lawrence, M.S., et al.: Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499(7457), 214–218 (2013). https://doi.org/10.1038/nature12213

    Article  Google Scholar 

  2. Repana, D., et al.: The network of cancer genes (NCG): a comprehensive catalogue of known and candidate cancer genes from cancer sequencing screens. Genome Biol. 20(1), 1–12 (2019). https://doi.org/10.1186/s13059-018-1612-0

    Article  Google Scholar 

  3. Sondka, Z., et al.: The COSMIC cancer gene census: describing genetic dysfunction across all human cancers. Nat. Rev. Cancer 18(11), 696–705 (2018). https://doi.org/10.1038/s41568-018-0060-1

    Article  Google Scholar 

  4. Cowen, L., et al.: Network propagation: a universal amplifier of genetic associations. Nat. Rev. Genet. 18(9), 551–562 (2017). https://doi.org/10.1038/nrg.2017.38

    Article  Google Scholar 

  5. Leiserson, M.D., et al.: Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes. Nat. Genet. 47(2), 106–114 (2015). https://doi.org/10.1038/ng.3168

    Article  Google Scholar 

  6. Reyna, M.A., Leiserson, M.D., Raphael, B.J.: Hierarchical HotNet: identifying hierarchies of altered subnetworks. Bioinformatics 34(17), i972–i980 (2018). https://doi.org/10.1093/bioinformatics/bty613

    Article  Google Scholar 

  7. Camacho, D.M., et al.: Next-generation machine learning for biological networks. Cell 173(7), 1581–1592 (2018). https://doi.org/10.1016/j.cell.2018.05.015

    Article  Google Scholar 

  8. Alipanahi, B., et al.: Predicting the sequence specificities of DNA- and RNA binding proteins by deep learning. Nat. Biotechnol. 33(8), 831–838 (2015). https://doi.org/10.1038/nbt.3300

    Article  Google Scholar 

  9. Zhou, J., Troyanskaya, O.G.: Predicting effects of noncoding variants with deep learning-based sequence model. Nat. Methods 12(10), 931–934 (2015). https://doi.org/10.1038/nmeth.3547

    Article  Google Scholar 

  10. Bach, S., et al.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10(7), 1–46 (2015). https://doi.org/10.1371/journal.pone.0130140

    Article  Google Scholar 

  11. Zhou, J., et al.: Graph neural networks: a review of methods and applications, arXiv, pp. 1–20, December 2018

    Google Scholar 

  12. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: NIPS, pp. 1–14 (2016)

    Google Scholar 

  13. Rossi, R.A., Zhou, R., Ahmed, N.K.: Deep inductive network representation learning. In: Companion of the Web Conference 2018 - WWW 2018, New York, New York, USA. ACM Press, pp. 953–960 (2018). https://doi.org/10.1145/3184558.3191524

  14. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: Online Learning of Social Representations, arXiv, pp. 1–10, March 2014. https://doi.org/10.1145/2623330.2623732

  15. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR 2017, pp. 1–10 (2016)

    Google Scholar 

  16. Wang, Q., et al.: Data descriptor: unifying cancer and normal rna sequencing data from different sources. Sci. Data 1–8 (2018). https://doi.org/10.1038/sdata.2018.61

  17. Johnson, W.E., Li, C., Rabinovic, A.: Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8(1), 118–127 (2007). https://doi.org/10.1093/biostatistics/kxj037

    Article  MATH  Google Scholar 

  18. Kamburov, A., et al.: ConsensusPathDB: toward a more complete picture of cell biology. Nucleic Acids Res. 39(SUPPL\(\_\)1), D712–D717 (2011). https://doi.org/10.1093/nar/gkq1156

    Article  Google Scholar 

  19. Bruna, J., et al.: Spectral networks and locally connected networks on graphs. In: ICLR, p. 14 (2013). https://doi.org/10.1088/1464-4258/4/5/302

    Article  Google Scholar 

  20. Li, Q., Han, Z., Wu, X.-M.: Deeper insights into graph convolutional networks for semi-supervised learning. arXiv, pp. 1–9 (2018)

    Google Scholar 

  21. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN Syst. 30(1–7), 107–117 (1998). https://doi.org/10.1016/S0169-7552(98)00110-X. ISSN 0169-7552

    Article  Google Scholar 

  22. Veličcković, P., et al.: Graph Attention Networks. arXiv, pp. 1–8 (2017)

    Google Scholar 

  23. Hakes, L., et al.: Protein-protein interaction networks and biology–what’s the connection? Nat. Biotechnol. 26(1), 69–72 (2008). https://doi.org/10.1038/nbt0108-69

    Article  Google Scholar 

  24. Fodde, R.: The APC gene in colorectal cancer. Eur. J. Cancer 38(7), 867–871 (2002). https://doi.org/10.1016/S0959-8049(02)00040-0

    Article  Google Scholar 

  25. Zhao, Z., et al.: Multiple biological functions of Twist1 in various cancers. Oncotarget 8(12), 20380–20393 (2017). 10.18632/oncotarget.14608

    Google Scholar 

  26. Dang, C.V.: MYC on the path to cancer. Cell 149(1), 22–35 (2012). https://doi.org/10.1016/j.cell.2012.03.003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roman Schulte-Sasse or Annalisa Marsico .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schulte-Sasse, R., Budach, S., Hnisz, D., Marsico, A. (2019). Graph Convolutional Networks Improve the Prediction of Cancer Driver Genes. In: Tetko, I., Kůrková, V., Karpov, P., Theis, F. (eds) Artificial Neural Networks and Machine Learning – ICANN 2019: Workshop and Special Sessions. ICANN 2019. Lecture Notes in Computer Science(), vol 11731. Springer, Cham. https://doi.org/10.1007/978-3-030-30493-5_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30493-5_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30492-8

  • Online ISBN: 978-3-030-30493-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics