Skip to main content

Bi-ResNet: Fully Automated Classification of Unregistered Contralateral Mammograms

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2019: Workshop and Special Sessions (ICANN 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11731))

Included in the following conference series:

Abstract

Motivated by the fact that the contralateral mammograms can provide the symmetrical difference of the left and right breasts to assist identify the breast cancer, we propose a bilateral residual neural network (Bi-ResNet) that can automatically classify the normality/abnormality based on the unregistered contralateral whole mammograms. Specifically, the parallel ResNet network is designed to simultaneously process a group of contralateral mammograms and respectively capture the discriminative representations from the left and right mammograms, and the concatenation strategy in the final is used to integrate the differentiated features for the abnormal classification task. The proposed Bi-ResNet can achieve reproducible and similar results based on different backbones and is superior to traditional contralateral analysis methods in both automation and performance. Finally, our proposed Bi-ResNet is greatly demonstrated on the publicly available DDSM dataset, a total of 10480 images, yielding the highest AUC of 0.908 on the abnormal classification task. Through the massive experiments, we deem our model is stable and robust, and has the potential to be recommended to clinical application in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burt, J.R., et al.: Deep learning beyond cats and dogs: recent advances in diagnosing breast cancer with deep neural networks. Br. J. Radiol. 91(1089), 20170545 (2018)

    Article  Google Scholar 

  2. Carneiro, G., Nascimento, J., Bradley, A.P.: Automated analysis of unregistered multi-view mammograms with deep learning. IEEE Trans. Med. Imaging 36(11), 2355–2365 (2017)

    Article  Google Scholar 

  3. Celaya-Padilla, J.M., et al.: Contralateral asymmetry for breast cancer detection: a CADx approach. Biocybern. Biomed. Eng. 38(1), 115–125 (2018)

    Article  Google Scholar 

  4. Communities, C.O., Communities, S.O.O.: Health statistics : atlas on mortality in the European Union. Office for Official Publications of the European Communities (2010)

    Google Scholar 

  5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database (2009)

    Google Scholar 

  6. Dhungel, N., Carneiro, G., Bradley, A.P.: A deep learning approach for the analysis of masses in mammograms with minimal user intervention. Med. Image Anal. 37, 114–128 (2017)

    Article  Google Scholar 

  7. Dhungel, N., Carneiro, G., Bradley, A.P.: Fully automated classification of mammograms using deep residual neural networks. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 310–314. IEEE (2017)

    Google Scholar 

  8. Gallego-Posado, J., Montoya-Zapata, D., Quintero-Montoya, Q.: Detection and diagnosis of breast tumors using deep convolutional neural networks. In: Research Group on Mathematical Modeling School of Mathematical Sciences Universidad EAFIT MedellÍn (2016)

    Google Scholar 

  9. Giger, M.L., Karssemeijer, N., Schnabel, J.A.: Breast image analysis for risk assessment, detection, diagnosis, and treatment of cancer. Annu. Rev. Biomed. Eng. 15, 327–357 (2013)

    Article  Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  12. Heath, M., Bowyer, K., Kopans, D., Moore, R., Kegelmeyer, W.P.: The digital database for screening mammography. In: Proceedings of the 5th International Workshop on Digital Mammography, pp. 212–218. Medical Physics Publishing (2000)

    Google Scholar 

  13. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  14. Jadoon, M.M., Zhang, Q., Haq, I.U., Butt, S., Jadoon, A.: Three-class mammogram classification based on descriptive CNN features. BioMed Res. Int. 2017, 11 (2017)

    Article  Google Scholar 

  15. Kooi, T., et al.: Large scale deep learning for computer aided detection of mammographic lesions. Med. Image Anal. 35, 303–312 (2017)

    Article  Google Scholar 

  16. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  17. LeCun, Y., Bengio, Y., et al.: Convolutional networks for images, speech, and time series. Handb. Brain Theory Neural Netw. 3361(10), 1995 (1995)

    Google Scholar 

  18. Lévy, D., Jain, A.: Breast mass classification from mammograms using deep convolutional neural networks. arXiv preprint arXiv:1612.00542 (2016)

  19. Martí, R., Díez, Y., Oliver, A., Tortajada, M., Zwiggelaar, R., Lladó, X.: Detecting abnormal mammographic cases in temporal studies using image registration features. In: Fujita, H., Hara, T., Muramatsu, C. (eds.) IWDM 2014. LNCS, vol. 8539, pp. 612–619. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07887-8_85

    Chapter  Google Scholar 

  20. Torre, L.A., Bray, F., Siegel, R.L., Ferlay, J., Lortet-Tieulent, J., Jemal, A.: Global cancer statistics, 2012. CA Cancer J. Clin. 65, 69–90 (2015)

    Article  Google Scholar 

  21. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010)

    Google Scholar 

  22. Fact Sheet No. 297: Cancer. World Health Organization, France (2009)

    Google Scholar 

  23. Rodriguez-Rojas, J., Garza-Montemayor, M., Trevino-Alvarado, V., Tamez-Pena, J.G.: Predictive features of breast cancer on Mexican screening mammography patients. In: Medical Imaging 2013: Computer-Aided Diagnosis, vol. 8670, p. 867023. International Society for Optics and Photonics (2013)

    Google Scholar 

  24. Tan, M., Zheng, B., Ramalingam, P., Gur, D.: Prediction of near-term breast cancer risk based on bilateral mammographic feature asymmetry. Acad. Radiol. 20(12), 1542–1550 (2013)

    Article  Google Scholar 

  25. Tsochatzidis, L., Costaridou, L., Pratikakis, I.: Deep learning for breast cancer diagnosis from mammograms—a comparative study. J. Imaging 5(3), 37 (2019)

    Article  Google Scholar 

  26. Wang, H., et al.: Breast mass classification via deeply integrating the contextual information from multi-view data. Pattern Recogn. 80, 42–52 (2018)

    Article  Google Scholar 

  27. Wang, X., Lederman, D., Tan, J., Wang, X.H., Zheng, B.: Computerized detection of breast tissue asymmetry depicted on bilateral mammograms: a preliminary study of breast risk stratification. Acad. Radiol. 17(10), 1234–1241 (2010)

    Article  Google Scholar 

  28. Wu, E., Wu, K., Cox, D., Lotter, W.: Conditional infilling GANs for data augmentation in mammogram classification. In: Stoyanov, D., et al. (eds.) RAMBO/BIA/TIA -2018. LNCS, vol. 11040, pp. 98–106. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00946-5_11

    Chapter  Google Scholar 

  29. Zheng, B., Sumkin, J.H., Zuley, M.L., Wang, X., Klym, A.H., Gur, D.: Bilateral mammographic density asymmetry and breast cancer risk: a preliminary assessment. Eur. J. Radiol. 81(11), 3222–3228 (2012)

    Article  Google Scholar 

  30. Zhu, W., Lou, Q., Vang, Y.S., Xie, X.: Deep multi-instance networks with sparse label assignment for whole mammogram classification. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 603–611. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_69

    Chapter  Google Scholar 

Download references

Acknowledgements

This work is jointly supported by the National Natural Science Foundation of China (Nos. 61175012 and 61201421) and Natural Science Foundation of Gansu Province (No. 18JR3RA288).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yide Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, R., Guo, Y., Wang, W., Ma, Y. (2019). Bi-ResNet: Fully Automated Classification of Unregistered Contralateral Mammograms. In: Tetko, I., Kůrková, V., Karpov, P., Theis, F. (eds) Artificial Neural Networks and Machine Learning – ICANN 2019: Workshop and Special Sessions. ICANN 2019. Lecture Notes in Computer Science(), vol 11731. Springer, Cham. https://doi.org/10.1007/978-3-030-30493-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30493-5_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30492-8

  • Online ISBN: 978-3-030-30493-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics