Skip to main content

Investigation of EEG-Based Graph-Theoretic Analysis for Automatic Diagnosis of Alcohol Use Disorder

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2019: Workshop and Special Sessions (ICANN 2019)

Abstract

Abnormal functional connectivity (FC) has been commonly observed during alcohol use disorder (AUD). In this work, FC analysis has been performed by incorporating EEG-based graph-theoretic analysis and a machine learning (ML) framework. Brain FC was quantified with synchronization likelihood (SL). Undirected graphs for each channel pair were constructed involving the SL measures. Furthermore, the graph-based features such as minimum spanning tree, distances between nodes, and maximum flow between the graph nodes were computed, termed as EEG data matrix. The matrix was used as input data to the ML framework to classify the study participants. The ML framework was validated with data acquired from 30 AUD patients and an age-matched group of 30 healthy controls. In this study, the classifiers such as SVM (accuracy = 98.7%), Naïve Bayes (accuracy = 88.6%), and logistic regression (accuracy = 89%) have shown promising discrimination results. The method was compared with two existing methods that also involve resting-state EEG data. The first method reported a classification accuracy of 91.7% while utilizing the time-based features such as Approximate Entropy (ApEn), Largest Lyapunov Exponent (LLE), Sample Entropy (SampEn), and four other Higher Order Spectra (HOS) features [1]. The second method reported 95.8% accuracy involving wavelet-based signal energy [2]. Since the study has utilized a small sample size, the generalization could not be possible. The FC-based graph-theoretic analysis in combination with ML methods could be used as an endophenotype for screening AUD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acharya, U.R., et al.: Automated diagnosis of normal and alcoholic EEG signals. Int. J. Neural Syst. 22(03), 1250011 (2012). https://doi.org/10.1142/S0129065712500116

    Article  Google Scholar 

  2. Faust, O., Yu, W., Kadri, N.A.: Computer-based identification of normal and alcoholic EEG signals using wavelet packets and energy measures. J. Mech. Med. Biol. 13(03), 1350033 (2013). https://doi.org/10.1142/S0219519413500334

    Article  Google Scholar 

  3. American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders (DSM-5®). American Psychiatric Publishing, Washington, D.C. (2013)

    Google Scholar 

  4. Kendler, K.S., et al.: Divorce and the onset of alcohol use disorder: a Swedish population-based longitudinal cohort and co-relative study. Am. J. Psychiatry 174(5), 451–458 (2017). https://doi.org/10.1176/appi.ajp.2016.16050589

    Article  Google Scholar 

  5. Juhás, M., et al.: Deep grey matter iron accumulation in alcohol use disorder. NeuroImage 148, 115–122 (2017). https://doi.org/10.1016/j.neuroimage.2017.01.007

    Article  Google Scholar 

  6. Saunders, J.B., et al.: Development of the alcohol use disorders identification test (AUDIT): WHO collaborative project on early detection of persons with harmful alcohol consumption-II. Addiction 88(6), 791–804 (1993). https://doi.org/10.1111/j.1360-0443.1993.tb02093.x

    Article  Google Scholar 

  7. Acharya, U.R., et al.: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput. Biol. Med. (2017). https://doi.org/10.1016/j.compbiomed.2017.09.017

    Article  Google Scholar 

  8. Saini, J., Dutta, M.: An extensive review on development of EEG-based computer-aided diagnosis systems for epilepsy detection. Netw.: Comput. Neural Syst. 1–27 (2017). https://doi.org/10.1080/0954898x.2017.1325527

    Article  Google Scholar 

  9. Srengers, J., et al.: O132 an EEG-based decision-support system for diagnosis and prognosis of autism spectrum disorder. Clin. Neurophysiol. 128(9), e221 (2017). https://doi.org/10.1016/j.clinph.2017.07.143

    Article  Google Scholar 

  10. Memar, P., Faradji, F.: A novel multi-class EEG-based sleep stage classification system. IEEE Trans. Neural Syst. Rehabil. Eng. 26(1), 84–95 (2018). https://doi.org/10.1109/TNSRE.2017.2776149

    Article  Google Scholar 

  11. Anand, A., et al.: Activity and connectivity of brain mood regulating circuit in depression: a functional magnetic resonance study. Biol. Psychiatry 57(10), 1079–1088 (2005). https://doi.org/10.1016/j.biopsych.2005.02.021

    Article  Google Scholar 

  12. Bae, J.N., et al.: Dorsolateral prefrontal cortex and anterior cingulate cortex white matter alterations in late-life depression. Biol. Psychiatry 60(12), 1356–1363 (2006). https://doi.org/10.1016/j.biopsych.2006.03.052

    Article  Google Scholar 

  13. Fingelkurts, A.A., et al.: Impaired functional connectivity at EEG alpha and theta frequency bands in major depression. Hum. Brain Mapp. 28(3), 247–261 (2007). https://doi.org/10.1002/hbm.20275

    Article  Google Scholar 

  14. Hamilton, J.P., Gotlib, I.H.: Neural substrates of increased memory sensitivity for negative stimuli in major depression. Biol. Psychiatry 63(12), 1155–1162 (2008). https://doi.org/10.1016/j.biopsych.2007.12.015

    Article  Google Scholar 

  15. Stam, C., et al.: Disturbed fluctuations of resting state EEG synchronization in Alzheimer’s disease. Clin. Neurophysiol. 116(3), 708–715 (2005). https://doi.org/10.1016/j.clinph.2004.09.022

    Article  Google Scholar 

  16. Smit, D.J., et al.: Heritability of “small-world” networks in the brain: a graph theoretical analysis of resting-state EEG functional connectivity. Hum. Brain Mapp. 29(12), 1368–1378 (2008). https://doi.org/10.1002/hbm.20468

    Article  Google Scholar 

  17. Catani, M., Ffytche, D.H.: The rises and falls of disconnection syndromes. Brain 128(10), 2224–2239 (2005). https://doi.org/10.1093/brain/awh622

    Article  Google Scholar 

  18. He, Y., Chen, Z., Evans, A.: Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer’s disease. J. Neurosci. 28(18), 4756–4766 (2008). https://doi.org/10.1523/JNEUROSCI.0141-08.2008

    Article  Google Scholar 

  19. Stam, C.J., et al.: Small-world networks and functional connectivity in Alzheimer’s disease. Cereb. Cortex 17(1), 92–99 (2006). https://doi.org/10.1093/cercor/bhj127

    Article  Google Scholar 

  20. Stam, C., et al.: Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer’s disease. Brain 132(1), 213–224 (2008). https://doi.org/10.1093/brain/awn262

    Article  Google Scholar 

  21. Alexander-Bloch, A., et al.: The discovery of population differences in network community structure: new methods and applications to brain functional networks in schizophrenia. Neuroimage 59(4), 3889–3900 (2012). https://doi.org/10.1016/j.neuroimage.2011.11.035

    Article  Google Scholar 

  22. Fornito, A., et al.: Schizophrenia, neuroimaging and connectomics. Neuroimage 62(4), 2296–2314 (2012). https://doi.org/10.1016/j.neuroimage.2011.12.090

    Article  Google Scholar 

  23. Stam, C., Van Dijk, B.: Synchronization likelihood: an unbiased measure of generalized synchronization in multivariate data sets. Physica D: Nonlinear Phenom. 163(3), 236–251 (2002). https://doi.org/10.1016/S0167-2789(01)00386-4

    Article  MathSciNet  MATH  Google Scholar 

  24. Babor, T.F., et al.: AUDIT: the alcohol use disorders identification test: guidelines for use in primary health care. World Health Organization (2001)

    Google Scholar 

  25. Bush, K., et al.: The AUDIT alcohol consumption questions (AUDIT-C): an effective brief screening test for problem drinking. Arch. Intern. Med. 158(16), 1789–1795 (1998). https://doi.org/10.1001/archinte.158.16.1789

    Article  Google Scholar 

  26. Jasper, H.H.: The ten twenty electrode system of the international federation. Electroencephalogr. Clin. Neurophysiol. 10, 371–375 (1958)

    Google Scholar 

  27. Qin, Y., Xu, P., Yao, D.: A comparative study of different references for EEG default mode network: the use of the infinity reference. Clin. Neurophysiol. 121(12), 1981–1991 (2010). https://doi.org/10.1016/j.clinph.2010.03.056

    Article  Google Scholar 

  28. Berg, P., Scherg, M.: A multiple source approach to the correction of eye artifacts. Electroencephalogr. Clin. Neurophysiol. 90(3), 229–241 (1994). https://doi.org/10.1016/0013-4694(94)90094-9

    Article  Google Scholar 

  29. Hoechstetter, K., Berg, P., Scherg, M.: BESA research tutorial 4: distributed source imaging. BESA Research Tutorial, pp. 1–29 (2010)

    Google Scholar 

  30. Liu, H., Motoda, H.: Computational Methods of Feature Selection. CRC Press, Boca Raton (2007)

    Book  Google Scholar 

  31. Mamitsuka, H.: Selecting features in microarray classification using ROC curves. Pattern Recogn. 39(12), 2393–2404 (2006). https://doi.org/10.1016/j.patcog.2006.07.010

    Article  MATH  Google Scholar 

  32. Sadegh-Zadeh, K.: Clinical decision support systems. In: Sadegh-Zadeh, K. (ed.) Handbook of Analytic Philosophy of Medicine. PM, vol. 119, pp. 705–722. Springer, Dordrecht (2015). https://doi.org/10.1007/978-94-017-9579-1_20

    Chapter  Google Scholar 

  33. Mumtaz, W., et al.: Review on EEG and ERP predictive biomarkers for major depressive disorder. Biomed. Signal Process. Control 22, 85–98 (2015). https://doi.org/10.1016/j.bspc.2015.07.003

    Article  Google Scholar 

  34. Chella, F., Pizzella, V., Zappasodi, F., Marzetti, L.: Impact of the reference choice on scalp EEG connectivity estimation. J. Neural Eng. 13(3), 036016 (2016). https://doi.org/10.1088/1741-2560/13/3/036016

    Article  Google Scholar 

  35. Elowitz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional regulators. Nature 403(6767), 335 (2000). https://doi.org/10.1038/35002125

    Article  Google Scholar 

  36. Theodoridis, S., Koutroumbas, K.: Pattern Recognition, pp. 341–342. Academic Press, Cambridge (1999)

    MATH  Google Scholar 

  37. Liu, H., Motoda, H.: Feature Selection for Knowledge Discovery and Data Mining. Kluwer Academic Publishers, Norwell (1998)

    Book  Google Scholar 

  38. Ross, D.T., et al.: Systematic variation in gene expression patterns in human cancer cell lines. Nat. Genet. 24(3), 227–235 (2000). https://doi.org/10.1038/73432

    Article  Google Scholar 

  39. Fosgate, G.T.: Practical sample size calculations for surveillance and diagnostic investigations. J. Vet. Diagn. Invest. 21(1), 3–14 (2009). https://doi.org/10.1177/104063870902100102

    Article  Google Scholar 

  40. Zhou, X.-H., McClish, D.K., Obuchowski, N.A.: Statistical Methods in Diagnostic Medicine, vol. 569. Wiley, Hoboken (2009)

    MATH  Google Scholar 

  41. Mumtaz, W., Malik, A.S.: A comparative study of different EEG reference choices for diagnosing unipolar depression. Brain Topogr. 31(1), 875–885 (2018). https://doi.org/10.1007/s10548-018-0651-x

    Article  Google Scholar 

  42. Mumtaz, W., Kamel, N., Ali, S.S.A., Malik, A.S.: An EEG-based functional connectivity measure for automatic detection of alcohol use disorder. Artif. Intell. Med. 84(1), 79–89 (2018). https://doi.org/10.1016/j.artmed.2017.11.002

    Article  Google Scholar 

  43. Mumtaz, W., Vuong, P.L., Xia, L., Malik, A.S., Rashid, R.B.A.: Automatic diagnosis of alcohol use disorder using EEG features. Knowl.-Based Syst. 105, 48–59 (2016). https://doi.org/10.1016/j.knosys.2016.04.026

    Article  Google Scholar 

Download references

Acknowledgment

This publication was supported by the project LO1506 of the Czech Ministry of Education, Youth and Sports under the program NPU I. The research work was supported by the HiCoE grant for CISIR, Ministry of Education, Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wajid Mumtaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mumtaz, W., Vařeka, L., Mouček, R. (2019). Investigation of EEG-Based Graph-Theoretic Analysis for Automatic Diagnosis of Alcohol Use Disorder. In: Tetko, I., Kůrková, V., Karpov, P., Theis, F. (eds) Artificial Neural Networks and Machine Learning – ICANN 2019: Workshop and Special Sessions. ICANN 2019. Lecture Notes in Computer Science(), vol 11731. Springer, Cham. https://doi.org/10.1007/978-3-030-30493-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30493-5_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30492-8

  • Online ISBN: 978-3-030-30493-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics