Skip to main content

UAV Detection: A STDP Trained Deep Convolutional Spiking Neural Network Retina-Neuromorphic Approach

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2019: Theoretical Neural Computation (ICANN 2019)

Abstract

The Dynamic Vision Sensor (DVS) has many attributes, such as sub-millisecond response time along with a good low light dynamic range, that allows it to be well suited to the task for UAV Detection. This paper proposes a system that exploits the features of an event camera solely for UAV detection while combining it with a Spiking Neural Network (SNN) trained using the unsupervised approach of Spike Time-Dependent Plasticity (STDP), to create an asynchronous, low power system with low computational overhead. Utilising the unique features of both the sensor and the network, this result in a system that is robust to a wide variety in lighting conditions, has a high temporal resolution, propagates only the minimal amount of information through the network, while training using the equivalent of 43,000 images. The network returns a 91% detection rate when shown other objects and can detect a UAV with less than 1% of pixels on the sensor being used for processing.

Supported by Leonardo, Data Collection in collaboration with University College London.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. BBC News: Gatwick Airport: Drones ground flights - BBC News. https://www.bbc.co.uk/news/uk-england-sussex-46623754

  2. Bi, G.Q., Poo, M.M.: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18(24), 10464–10472 (1998). https://doi.org/10.1523/JNEUROSCI.18-24-10464.1998

    Article  Google Scholar 

  3. Bi, Y., Andreopoulos, Y.: PIX2NVS: parameterized conversion of pixel-domain video frames to neuromorphic vision streams. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 1990–1994. IEEE, September 2017. https://doi.org/10.1109/ICIP.2017.8296630

  4. Brandli, C., Berner, R., Yang, M., Liu, S.-C., Delbruck, T.: A \(240\times 180\) 130 dB 3 \(\mu \)s latency global shutter spatiotemporal vision sensor. IEEE J. Solid-State Circuits 49(10), 2333–2341 (2014). https://doi.org/10.1109/JSSC.2014.2342715

    Article  Google Scholar 

  5. Civil Aviation Authority: Airprox involving UAS Drones—UK Airprox Board (2019). https://www.airproxboard.org.uk/Reports-and-analysis/Statistics/Airprox-involving-UAS-Drones

  6. G4S: drones: threat from above. Technical report (2017). www.g4s.us

  7. Garcia, G.P., Camilleri, P., Liu, Q., Furber, S.: pyDVS: an extensible, real-time dynamic vision sensor emulator using off-the-shelf hardware. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–7. IEEE, December 2016. https://doi.org/10.1109/SSCI.2016.7850249

  8. Huang, C., Resnik, A., Celikel, T., Englitz, B.: Adaptive spike threshold enables robust and temporally precise neuronal encoding. PLoS Comput. Biol. 12(6), e1004984 (2016). https://doi.org/10.1371/journal.pcbi.1004984. https://dx.plos.org/10.1371/journal.pcbi.1004984

    Article  Google Scholar 

  9. Huang, J., Guo, M., Chen, S.: A dynamic vision sensor with direct logarithmic output and full-frame picture-on-demand. In: 2017 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–4. IEEE, May 2017. https://doi.org/10.1109/ISCAS.2017.8050546

  10. Kheradpisheh, S.R., Ganjtabesh, M., Thorpe, S.J., Masquelier, T.: STDP-based spiking deep convolutional neural networks for object recognition. Neural Netw. 99, 56–67 (2018). https://doi.org/10.1016/J.NEUNET.2017.12.005. https://www.sciencedirect.com/science/article/pii/S0893608017302903?via%3Dihub

    Article  Google Scholar 

  11. Mueggler, E., Rebecq, H., Gallego, G., Delbruck, T., Scaramuzza, D.: The event-camera dataset and simulator: event-based data for pose estimation, visual odometry, and SLAM. Technical report (2016). http://rpg.ifi.uzh.ch/davis_data.html

  12. Panda, P., Srinivasan, G., Roy, K.: Convolutional spike timing dependent plasticity based feature learning in spiking neural networks. Technical report (2017). https://arxiv.org/pdf/1703.03854.pdf

  13. Rebecq, H., Gehrig, D., Scaramuzza, D.: ESIM: an open event camera simulator. Technical report (2018). https://www.blender.org/

  14. Shakhatreh, H., et al.: Unmanned aerial vehicles: a survey on civil applications and key research challenges. IEEE Access 7, 48572–48634 (2018)

    Article  Google Scholar 

  15. Shoham, S., O’Connor, D.H., Segev, R.: How silent is the brain: is there a “dark matter” problem in neuroscience? J. Comp. Physiol. A. 192(8), 777–784 (2006). https://doi.org/10.1007/s00359-006-0117-6

    Article  Google Scholar 

  16. Son, B., et al.: 4.1 A \(640\times 480\) dynamic vision sensor with a 9 \(\upmu \)m pixel and 300Meps address-event representation. In: 2017 IEEE International Solid-State Circuits Conference (ISSCC), pp. 66–67. IEEE, February 2017. https://doi.org/10.1109/ISSCC.2017.7870263

  17. Tavanaei, A., Maida, A.S.: Bio-inspired spiking convolutional neural network using layer-wise sparse coding and STDP learning. Technical report (2017). https://arxiv.org/pdf/1611.03000.pdf

  18. Thiele, J.C., Bichler, O., Dupret, A.: Event-based, timescale invariant unsupervised online deep learning with STDP. Front. Comput. Neurosci. 12, 46 (2018). https://doi.org/10.3389/fncom.2018.00046

    Article  Google Scholar 

  19. Department for Transport, UK: Taking Flight: The Future of Drones in the UK Government Response (2019). https://assets.publishing.service.gov.uk/government/uploads/future-of-drones-in-uk-consultation-response-web.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Kirkland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kirkland, P., Di Caterina, G., Soraghan, J., Andreopoulos, Y., Matich, G. (2019). UAV Detection: A STDP Trained Deep Convolutional Spiking Neural Network Retina-Neuromorphic Approach. In: Tetko, I., Kůrková, V., Karpov, P., Theis, F. (eds) Artificial Neural Networks and Machine Learning – ICANN 2019: Theoretical Neural Computation. ICANN 2019. Lecture Notes in Computer Science(), vol 11727. Springer, Cham. https://doi.org/10.1007/978-3-030-30487-4_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30487-4_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30486-7

  • Online ISBN: 978-3-030-30487-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics