Skip to main content

Abstract

Neuroscience studies inspire that structures are needed in the hidden space of deep learning models. In this paper, we propose a capsule restricted Boltzmann machine and a capsule Helmholtz machine by replacing individual hidden variables with encapsulated groups of hidden variables. Our preliminary experiments show that capsule activities in both models can be dynamically determined in context, and these activity spectra exhibit between-class patterns and within-class variations. Our models offer a novel approach to visualizing and understanding the hidden states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language model. J. Mach. Learn. Res. 2, 1137–1155 (2003)

    MATH  Google Scholar 

  2. Bornschein, J., Bengio, Y.: Reweighted wake-sleep. In: International Conference on Learning Representations (2015)

    Google Scholar 

  3. Courville, A., Bergstra, J., Bengio, Y.: A spike and slab restricted Boltzmann machine. In: International Conference on Artificial Intelligence and Statistics, pp. 233–241 (2011)

    Google Scholar 

  4. Dayan, P., Hinton, G., Neal, R., Zemel, R.: The Helmholtz machine. Neural Comput. 7, 1022–1037 (1995). https://doi.org/10.1162/neco.1995.7.5.889

    Article  Google Scholar 

  5. Fodor, J., Pylyshyn, Z.: Connectionism and cognitive architecture: a critical analysis. Cognition 28(1–2), 3–71 (1988). https://doi.org/10.1016/0010-0277(88)90031-5

    Article  Google Scholar 

  6. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  7. Hinton, G.: Aetherial symbols. In: AAAI Spring Symposium on Knowledge Representation and Reasoning: Integrating Symbolic and Neural Approaches (2015)

    Google Scholar 

  8. Hinton, G., et al.: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process. Mag. 29(6), 82–97 (2012). https://doi.org/10.1109/MSP.2012.2205597

    Article  Google Scholar 

  9. Hinton, G., Krizhevsky, A., Wang, S.: Transforming auto-encoder. In: International Conference on Artificial Neural Networks, pp. 44–51 (2011). https://doi.org/10.1007/978-3-642-21735-7_6

    Google Scholar 

  10. Hinton, G., McClelland, J., Rumelhart, D.: Distributed representations. In: Rumelhart, D., McClelland, J. (eds.) Parallel Distributed Processing: Explorations in the Microstructure of Cognition, pp. 77–109. MIT Press, Cambridge (1986)

    Google Scholar 

  11. Hinton, G., Osindero, S., Teh, Y.: A fast learning algorithm for deep belief nets. Neural Comput. 18, 1527–1554 (2006). https://doi.org/10.1162/neco.2006.18.7.1527

    Article  MathSciNet  MATH  Google Scholar 

  12. Hinton, G., Sabour, S., Frosst, N.: Matrix capsules with EM routing. In: International Conference on Learning Representations (2018)

    Google Scholar 

  13. Kingma, D., Welling, M.: Auto-encoding variational Bayes. In: International Conference on Learning Representations (2014)

    Google Scholar 

  14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  15. LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989). https://doi.org/10.1162/neco.1989.1.4.541

    Article  Google Scholar 

  16. Li, Y., Zhu, X.: Exploring Helmholtz machine and deep belief net in the exponential family perspective. In: ICML 2018 Workshop on Theoretical Foundations and Applications of Deep Generative Models (2018)

    Google Scholar 

  17. Li, Y., Zhu, X.: Exponential family restricted Boltzmann machines and annealed importance sampling. In: International Joint Conference on Neural Networks, pp. 39–48 (2018). https://doi.org/10.1109/IJCNN.2018.8489413

  18. Mnih, A., Gregor, K.: Neural variational inference and learning in belief networks. In: International Conference on Machine Learning, pp. II-1791–II-1799 (2014)

    Google Scholar 

  19. Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models. In: International Conference on Machine Learning, pp. II-1278–II-1286 (2014)

    Google Scholar 

  20. Sabour, S., Frosst, N., Hinton, G.: Dynamic routing between capsules. In: Neural Information Processing Systems, pp. 3856–3866 (2017)

    Google Scholar 

  21. Salakhutdinov, R.: Learning and evaluating Boltzmann machines. Department of Computer Science, University of Toronto, Toronto, Canada, Technical report (2008)

    Google Scholar 

  22. Tieleman, T.: Training restricted Boltzmann machines using approximations to the likelihood gradient. In: International Conference on Machine Learning, pp. 1064–1071 (2008). https://doi.org/10.1145/1390156.1390290

  23. Welling, M., Rosen-Zvi, M., Hinton, G.: Exponential family harmoniums with an application to information retrieval. In: Advances in Neural Information Processing Systems, pp. 1481–1488 (2005)

    Google Scholar 

  24. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. ArXiv p. arXiv:1708.07747v2 (2017)

  25. Zhao, S., Song, J., Ermon, S.: Towards a deeper understanding of variational autoencoding models. arXiv p. arXiv:1702.08658 (2017)

Download references

Acknowledgement

This project was supported by the NRC New Beginnings Ideation Fund. The authors would like to thank the anonymous reviewers for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifeng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Crown

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Zhu, X. (2019). Capsule Generative Models. In: Tetko, I., Kůrková, V., Karpov, P., Theis, F. (eds) Artificial Neural Networks and Machine Learning – ICANN 2019: Theoretical Neural Computation. ICANN 2019. Lecture Notes in Computer Science(), vol 11727. Springer, Cham. https://doi.org/10.1007/978-3-030-30487-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30487-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30486-7

  • Online ISBN: 978-3-030-30487-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics