Skip to main content

An Evaluation of Various Regression Models for the Prediction of Two-Terminal Network Reliability

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2019: Theoretical Neural Computation (ICANN 2019)

Abstract

Analyzing network data is presently a big challenge for applied machine learning. Many model architectures have been proposed to study or extract information from network data for specific applications. In this paper, we compare the performance of autoencoders, convolutional neural networks and extreme gradient boosting decision trees with different configurations for the task of approximating two-terminal network reliability. The ground truth is generated using an analytical method. Various synthetic datasets containing networks with different configurations are used. The obtained results help us to identify the dataset factors which affect the prediction performance of these models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collective classification in network data. AI Mag. 29(3), 93–106 (2008). https://doi.org/10.1609/aimag.v29i3.2157

    Article  Google Scholar 

  2. Macskassy, S.A., Provost, F.: A brief survey of machine learning methods for classification in networked data and an application to suspicion scoring. In: Airoldi, E., Blei, D.M., Fienberg, S.E., Goldenberg, A., Xing, E.P., Zheng, A.X. (eds.) ICML 2006. LNCS, vol. 4503, pp. 172–175. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73133-7_13

    Chapter  Google Scholar 

  3. Latouche, P., Rossi, F.: Graphs in machine learning: an introduction. In: 23-th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), Bruges, Belgium, pp. 207–218 (2015). hal-01166849

    Google Scholar 

  4. Canning, J.P., et al.: Network classification and categorization (2017). arXiv:1709.04481

  5. Hamilton, W.L., Ying, R., Leskovec, J.: Representation learning on graphs: methods and applications. IEEE Data Eng. Bull. 40(3), 52–74 (2017). arXiv:1709.05584

  6. Cașcaval, P., Floria, S.A.: Two approximate approaches for reliability evaluation in large networks. Comparative study. In: 22nd International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania, pp. 541–546. IEEE (2018). https://doi.org/10.1109/icstcc.2018.8540730

  7. Cașcaval, P., Floria, S.A.: SDP algorithm for network reliability evaluation. In: 2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications (INISTA), Gdynia, Poland, pp. 119–125. IEEE (2017). https://doi.org/10.1109/inista.2017.8001143

  8. Lin, F., Cohen, W.W.: Semi-supervised classification of network data using very few labels. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, Odense, Denmark, pp. 192–199. IEEE (2010). https://doi.org/10.1109/asonam.2010.19

  9. Brun, C., Chevenet, F., Martin, D., Wojcik, J., Guénoche, A., Jacq, B.: Functional classification of proteins for the prediction of cellular function from a protein-protein interaction network. Genome Biol. 5(1), R6 (2003). https://doi.org/10.1186/gb-2003-5-1-r6

    Article  Google Scholar 

  10. Saigo, H., Nowozin, S., Kadowaki, T., Kudo, T., Tsuda, K.: gBoost: a mathematical programming approach to graph classification and regression. Mach. Learn. 75(1), 69–89 (2009). https://doi.org/10.1007/s10994-008-5089-z

    Article  Google Scholar 

  11. Peranginangin, Y., Alamsyah, A.: Multiple regression to analyse social graph of brand awareness. Telkomnika 15(1), 336–340 (2017). https://doi.org/10.12928/telkomnika.v15i1.3460

    Article  Google Scholar 

  12. Choma, N., et al.: Graph neural networks for icecube signal classification. In: 17th IEEE International Conference on Machine Learning and Applications (ICMLA), Orlando, FL, pp. 386–391. IEEE (2018). https://doi.org/10.1109/icmla.2018.00064

  13. Zhao, X., Zong, B., Guan, Z., Zhang, K., Zhao, W.: Substructure assembling network for graph classification. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018). http://www.cs.ucsb.edu/~bzong/doc/aaai18-san-zong.pdf

  14. Zhang, M., Cui, Z., Neumann, M., Chen, Y.: An end-to-end deep learning architecture for graph classification. In: AAAI Conference on Artificial Intelligence, pp. 4438–4445 (2018). https://www.cse.wustl.edu/~muhan/papers/AAAI_2018_DGCNN.pdf

  15. Vishwanathan, S.V.N., Schraudolph, N.N., Kondor, R., Borgwardt, K.M.: Graph kernels. J. Mach. Learn. Res. 11, 1201–1242 (2010). http://www.jmlr.org/papers/volume11/vishwanathan10a/vishwanathan10a.pdf

    MathSciNet  MATH  Google Scholar 

  16. Ghosh, S., Das, N., Gonçalves, T., Quaresma, P., Kundu, M.: The journey of graph kernels through two decades. Comput. Sci. Rev. 27, 88–111 (2018). https://doi.org/10.1016/j.cosrev.2017.11.002

    Article  MathSciNet  MATH  Google Scholar 

  17. Narayanan, A., Chandramohan, M., Venkatesan, R., Chen, L., Liu, Y., Jaiswal, S.: graph2vec: learning distributed representations of graphs (2017). arXiv:1707.05005

  18. Goyal, P., Ferrara, E.: Graph embedding techniques, applications, and performance: a survey. Knowl.-Based Syst. 151, 78–94 (2018). https://doi.org/10.1016/j.knosys.2018.03.022

    Article  Google Scholar 

  19. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. In: 26th International Conference on Neural Information Processing Systems, NIPS, Lake Tahoe, pp. 3111–3119 (2013). arXiv:1310.4546

  20. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word representation. In: Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, pp. 1532–1543. Association for Computational Linguistics (2014). https://doi.org/10.3115/v1/d14-1162

  21. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. Parallel Distrib. Process. 1, 318–362 (1986)

    Google Scholar 

  22. Schwenk, H., Milgram, M.: Transformation invariant auto association with application to handwritten character recognition. In: Tesauro, G., Touretzky, D.S., Leen, T.K. (eds.) 7th International Conference on Neural Information Processing Systems (NIPS 1994), pp. 991–998. MIT Press, Cambridge, MA, USA (1994)

    Google Scholar 

  23. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  24. LeCun, Y., Haffner, P., Bottou, L., Bengio, Y.: Object recognition with gradient-based learning. Shape, Contour and Grouping in Computer Vision. LNCS, vol. 1681, pp. 319–345. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-46805-6_19

    Chapter  Google Scholar 

  25. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: KDD 2016 Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, California, pp. 785–794. ACM (2016). https://doi.org/10.1145/2939672.2939785

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florin Leon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Floria, SA., Leon, F., Cașcaval, P., Logofătu, D. (2019). An Evaluation of Various Regression Models for the Prediction of Two-Terminal Network Reliability. In: Tetko, I., Kůrková, V., Karpov, P., Theis, F. (eds) Artificial Neural Networks and Machine Learning – ICANN 2019: Theoretical Neural Computation. ICANN 2019. Lecture Notes in Computer Science(), vol 11727. Springer, Cham. https://doi.org/10.1007/978-3-030-30487-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30487-4_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30486-7

  • Online ISBN: 978-3-030-30487-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics