Skip to main content

Distinguishing Violinists and Pianists Based on Their Brain Signals

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2019: Theoretical Neural Computation (ICANN 2019)

Abstract

Many studies in neuropsychology have highlighted that expert musicians, who started learning music in childhood, present structural differences in their brains with respect to non-musicians. This indicates that early music learning affects the development of the brain. Also, musicians’ neuronal activity is different depending on the played instrument and on the expertise. This difference can be analysed by processing electroencephalographic (EEG) signals through Artificial Intelligence models. This paper explores the feasibility to build an automatic model that distinguishes violinists from pianists based only on their brain signals. To this aim, EEG signals of violinists and pianists are recorded while they play classical music pieces and an Artificial Neural Network is trained through a cloud computing platform to build a binary classifier of segments of these signals. Our model has the best classification performance on 20 seconds EEG segments, but this performance depends on the involved musicians’ expertise. Also, the brain signals of a cellist are demonstrated to be more similar to violinists’ signals than to pianists’ signals. In summary, this paper demonstrates that distinctive information is present in the two types of musicians’ brain signals, and that this information can be detected even by an automatic model working with a basic EEG equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 52North: The 52north WPS service (2016). http://52north.org/communities/geoprocessing/wps/

  2. An, K.O., Kim, J.B., Song, W.K., Lee, I.H.: Development of an emergency call system using a brain computer interface (BCI). In: 2010 3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 918–923. IEEE (2010). https://doi.org/10.1109/BIOROB.2010.5626331

  3. Auditorium della Compagnia: Auditorium della Compagnia Montecastelli - A project of Science and Music (2017). http://www.ilpoggiomontecastelli.com/en/

  4. Baier, G., Hermann, T., Stephani, U.: Event-based sonification of eeg rhythms in real time. Clin. Neurophys. 118(6), 1377–1386 (2007). https://doi.org/10.1016/j.clinph.2007.01.025

    Article  Google Scholar 

  5. Bengio, Y., Boulanger-Lewandowski, N., Pascanu, R.: Advances in optimizing recurrent networks. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8624–8628. IEEE (2013). https://doi.org/10.1109/ICASSP.2013.6639349

  6. Bertrand, A., Mihajlovic, V., Grundlehner, B., Van Hoof, C., Moonen, M.: Motion artifact reduction in EEG recordings using multi-channel contact impedance measurements. In: 2013 IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 258–261. IEEE (2013). https://doi.org/10.1109/BioCAS.2013.6679688

  7. Bigliassi, M., León-Domínguez, U., Altimari, L.R.: How does the prefrontal cortex “listen” to classical and techno music? A functional near-infrared spectroscopy (fNIRS) study. Psychol. Neurosci. 8(2), 246 (2015). https://doi.org/10.1037/h0101064

    Article  Google Scholar 

  8. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995). ISBN 0198538642

    MATH  Google Scholar 

  9. Britton, J., et al.: Electroencephalography (EEG): an introductory text and atlas of normal and abnormal findings in adults, children, and infants. American Epilepsy Society (2016). ISBN 9780997975604

    Google Scholar 

  10. Candela, L., Castelli, D., Pagano, P.: D4Science: an e-infrastructure for supporting virtual research environments. In: IRCDL 2009 post-proceedings, pp. 166–169 (2009). ISBN 978-88-903541-7-5

    Google Scholar 

  11. Chen-Hafteck, L., Mang, E.: Music and language in early childhood development and learning. Music Learn. Teach. Infancy Child. Adolesc. Oxford Handb. Music Educ. 2, 40 (2018). https://doi.org/10.1093/oxfordhb/9780199730810.013.0016

    Article  Google Scholar 

  12. Coro, G.: Dataminer service for testing artificial neural networks in D4Science (2018). https://services.d4science.org/group/scalabledatamining/data-miner?OperatorId=org.gcube.dataanalysis.wps.statisticalmanager.synchserver.mappedclasses.transducerers.FEED_FORWARD_NEURAL_NETWORK_REGRESSOR

  13. Coro, G.: Dataminer service for training artificial neural networks in D4Science (2018). https://services.d4science.org/group/scalabledatamining/data-miner?OperatorId=org.gcube.dataanalysis.wps.statisticalmanager.synchserver.mappedclasses.transducerers.FEED_FORWARD_NEURAL_NETWORK_TRAINER

  14. Coro, G., Candela, L., Pagano, P., Italiano, A., Liccardo, L.: Parallelizing the execution of native data mining algorithms for computational biology. Concurr. Comput.: Pract. Exp. 27(17), 4630–4644 (2015). https://doi.org/10.1002/cpe.3435

    Article  Google Scholar 

  15. Coro, G., Panichi, G., Scarponi, P., Pagano, P.: Cloud computing in a distributed e-infrastructure using the web processing service standard. Concurr. Comput.: Pract. Exp 29(18), e4219 (2017). https://doi.org/10.1002/cpe.4219

    Article  Google Scholar 

  16. Coro, G., Vilas, L.G., Magliozzi, C., Ellenbroek, A., Scarponi, P., Pagano, P.: Forecasting the ongoing invasion of Lagocephalus sceleratus in the Mediterranean sea. Ecol. Modell. 371, 37–49 (2018). https://doi.org/10.1016/j.ecolmodel.2018.01.007

    Article  Google Scholar 

  17. Critchley, M., Henson, R.A.: Music and the Brain: Studies in the Neurology of Music. Butterworth-Heinemann, Oxford (2014). ISBN 9781483192796

    Google Scholar 

  18. Cutugno, F., Coro, G., Petrillo, M.: Multigranular scale speech recognizers: technological and cognitive view. In: Bandini, S., Manzoni, S. (eds.) AI*IA 2005. LNCS (LNAI), vol. 3673, pp. 327–330. Springer, Heidelberg (2005). https://doi.org/10.1007/11558590_33

    Chapter  Google Scholar 

  19. Deuschl, G., Eisen, A.: Recommendations for the practice of clinical neurophysiology (guidelines of the international federation of clinical neurophysiology). Electroencephalography and Clinical Neurophysiology, Supplement (1999)

    Google Scholar 

  20. Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B., Taub, E.: Increased cortical representation of the fingers of the left hand in string players. Science 270(5234), 305–307 (1995). https://doi.org/10.1126/science.270.5234.305

    Article  Google Scholar 

  21. Fink, A., Benedek, M.: Eeg alpha power and creative ideation. Neurosci. Biobehav. Rev. 44, 111–123 (2014). https://doi.org/10.1016/j.neubiorev.2012.12.002

    Article  Google Scholar 

  22. Forcucci, L.: Music for brainwaves: embodiment of sound, space and EEG data. Body Space Technol. 17(1) (2018). https://doi.org/10.16995/bst.297

    Article  Google Scholar 

  23. Frisoli, A., Loconsole, C., Leonardis, D., Banno, F., Barsotti, M., Chisari, C., Bergamasco, M.: A new gaze-BCI-driven control of an upper limb exoskeleton for rehabilitation in real-world tasks. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 42(6), 1169–1179 (2012). https://doi.org/10.1109/TSMCC.2012.2226444

    Article  Google Scholar 

  24. Gaser, C., Schlaug, G.: Brain structures differ between musicians and non-musicians. J. Neurosci. 23(27), 9240–9245 (2003). https://doi.org/10.1523/JNEUROSCI.23-27-09240.2003

    Article  Google Scholar 

  25. Genuth, I.: Brain computer interfaces bring neuroscience to the masses (2015). https://eandt.theiet.org/content/articles/2015/05/brain-computer-interfaces-bring-neuroscience-to-the-masses/

  26. Herrmann, C.S., Strüber, D., Helfrich, R.F., Engel, A.K.: EEG oscillations: from correlation to causality. Int. J. Psychophys. 103, 12–21 (2016). https://doi.org/10.1016/j.ijpsycho.2015.02.003

    Article  Google Scholar 

  27. Hirata, Y., Hirata, Y.: Application of EEG in technology-enhanced language learning environments. In: Enhancing Learning Through Technology: Research on Emerging Technologies and Pedagogies, p. 115 (2008). https://doi.org/10.1142/97898127994560008

  28. Homan, R.W., Herman, J., Purdy, P.: Cerebral location of international 10–20 system electrode placement. Electroencephal. Clin. Neurophys. 66(4), 376–382 (1987). https://doi.org/10.1016/0013-4694(87)90206-9

    Article  Google Scholar 

  29. Langheim, F.J., Callicott, J.H., Mattay, V.S., Duyn, J.H., Weinberger, D.R.: Cortical systems associated with covert music rehearsal. Neuroimage 16(4), 901–908 (2002). https://doi.org/10.1006/nimg.2002.1144

    Article  Google Scholar 

  30. Lebo, T., et al.: PROV-O: the PROV ontology. W3C Recommendation (2013). http://www.w3.org/TR/prov-o/

  31. Liang, S.F., Hsieh, T.H., Chen, W.H., Lin, K.J.: Classification of EEG signals from musicians and non-musicians by neural networks. In: 2011 9th World Congress on Intelligent Control and Automation, pp. 865–869. IEEE (2011)

    Google Scholar 

  32. Lin, C.J., Ding, C.H., Liu, C.C., Liu, Y.L.: Development of a real-time drowsiness warning system based on an embedded system. In: 2015 International Conference on Advanced Robotics and Intelligent Systems (ARIS), pp. 1–4. IEEE (2015). https://doi.org/10.1109/ARIS.2015.7158365

  33. Mansouri, F.A., Acevedo, N., Illipparampil, R., Fehring, D.J., Fitzgerald, P.B., Jaberzadeh, S.: Interactive effects of music and prefrontal cortex stimulation in modulating response inhibition. Sci. Rep. 7(1), 18096 (2017). https://doi.org/10.1038/s41598-017-18119-x

    Article  Google Scholar 

  34. Miranda, E.R.: Brain-computer music interface for composition and performance. Int. J. Disabil. Hum. Dev. 5(2), 119 (2006). https://doi.org/10.1515/IJDHD.2006.5.2.119

    Article  Google Scholar 

  35. National Research Council of Italy: The D4Science online workspace (2016). https://wiki.gcube-system.org/gcube/Workspace

  36. Navalyal, G.U., Gavas, R.D.: A dynamic attention assessment and enhancement tool using computer graphics. Hum. Cent. Comput. Inform. Sci. 4(1), 11 (2014). https://doi.org/10.1186/s13673-014-0011-0

    Article  Google Scholar 

  37. NeuroSky: Ultimate guide to EEG (2017). http://neurosky.com/biosensors/eeg-sensor/ultimate-guide-to-eeg/

  38. Nguyen, T., Chuang, C.l., Lee, K.H., Jin, L.J.: Conductive eartip assembly. US Patent US20090112077A1 (2004)

    Google Scholar 

  39. Oechslin, M.S., Imfeld, A., Loenneker, T., Meyer, M., Jäncke, L.: The plasticity of the superior longitudinal fasciculus as a function of musical expertise: a diffusion tensor imaging study. Front. Hum. Neurosci. 3, 76 (2010). https://doi.org/10.3389/neuro.09.076.2009

    Article  Google Scholar 

  40. O’Hare, D.: Biosensors and sensor systems. In: Yang, G.-Z. (ed.) Body Sensor Networks, pp. 55–115. Springer, London (2014). https://doi.org/10.1007/978-1-4471-6374-9_2

    Chapter  Google Scholar 

  41. Paraskevopoulos, E., Kraneburg, A., Herholz, S.C., Bamidis, P.D., Pantev, C.: Musical expertise is related to altered functional connectivity during audiovisual integration. Proc. Natl. Acad. Sci. 112(40), 12522–12527 (2015). https://doi.org/10.1073/pnas.1510662112

    Article  Google Scholar 

  42. Patki, S., et al.: Wireless EEG system with real time impedance monitoring and active electrodes. In: 2012 IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 108–111. IEEE (2012). https://doi.org/10.1109/BioCAS.2012.6418408

  43. Peretz, I., Zatorre, R.J.: Brain organization for music processing. Annu. Rev. Psychol. 56, 89–114 (2005). https://doi.org/10.1146/annurev.psych.56.091103.070225

    Article  Google Scholar 

  44. Petsche, H., von Stein, A., Filz, O.: Eeg aspects of mentally playing an instrument. Cogn. Brain Res. 3(2), 115–123 (1996). https://doi.org/10.1016/0926-6410(95)00036-4

    Article  Google Scholar 

  45. Potard, G., Schiemer, G.: Listening to the mind listening: sonification of the coherence matrix and power spectrum of EEG signals. In: ICAD Post-Proceedings, pp. 1–4 (2004). ISBN: 1-74108-048-7

    Google Scholar 

  46. Ribeiro, E., Thomaz, C.E.: A multivariate statistical analysis of EEG signals for differentiation of musicians and non-musicians. In: Anais do XV Encontro Nacional de Inteligência Artificial e Computacional, pp. 497–505. SBC (2018). https://doi.org/10.5753/eniac.2018.4442

  47. Rumelhart, D.E., Hinton, G.E., Williams, R.J., et al.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986). https://doi.org/10.1038/323533a0

    Article  MATH  Google Scholar 

  48. Schlaug, G., Norton, A., Overy, K., Winner, E.: Effects of music training on the child’s brain and cognitive development. Ann. New York Acad. Sci. 1060(1), 219–230 (2005). https://doi.org/10.1196/annals.1360.015

    Article  Google Scholar 

  49. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015). https://doi.org/10.1016/j.neunet.2014.09.003

    Article  Google Scholar 

  50. Smith, K.: Reading minds. Nature 502(7472), 428 (2013). https://doi.org/10.1038/502428a

    Article  Google Scholar 

  51. Stewart, L., Henson, R., Kampe, K., Walsh, V., Turner, R., Frith, U.: Brain changes after learning to read and play music. Neuroimage 20(1), 71–83 (2003). https://doi.org/10.1016/S1053-8119(03)00248-9

    Article  Google Scholar 

  52. Subhani, A.R., Kamel, N., Saad, M.N.M., Nandagopal, N., Kang, K., Malik, A.S.: Mitigation of stress: new treatment alternatives. Cogn. Neurodyn. 12(1), 1–20 (2018). https://doi.org/10.1007/s11571-017-9460-2

    Article  Google Scholar 

  53. Sun, C., et al.: The effects of different types of music on electroencephalogram. In: 2013 IEEE International Conference on Bioinformatics and Biomedicine, pp. 31–37. IEEE (2013). https://doi.org/10.1109/WCICA.2011.5970639

  54. Trevisan, A.A., Jones, L.: Brain music system: brain music therapy based on real-time sonified brain signals. In: Proceedings of the IET Seminar on Assisted Living, pp. 1–8 (2011). https://doi.org/10.1016/j.neulet.2011.05.159

    Article  Google Scholar 

  55. Vaquero, L., et al.: Structural neuroplasticity in expert pianists depends on the age of musical training onset. Neuroimage 126, 106–119 (2016). https://doi.org/10.1016/j.neuroimage.2015.11.008

    Article  Google Scholar 

  56. Wang, A., Andreas Larsen, E.: Using brain-computer interfaces in an interactive multimedia application. In: Proceedings of the IASTED International Conference on Software Engineering and Applications, SEA 2012 (2012).(2012). https://doi.org/10.2316/P.2012.790-046

  57. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clin. Neurophys. 113(6), 767–791 (2002). https://doi.org/10.1016/S1388-24570200057-3

    Article  Google Scholar 

  58. Zatorre, R.J., Chen, J.L., Penhune, V.B.: When the brain plays music: auditory-motor interactions in music perception and production. Nat. Rev. Neurosci. 8(7), 547–558 (2007). https://doi.org/10.1038/nrn2152

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Auditorium della Compagnia association for hosting the experiment, in particular Alessandro Lipari for the technical help, and the musicians for accepting their involvement in the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianpaolo Coro .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare no conflict of interest. This research has been conducted in compliance with the Helsinki Declaration for Ethical Principles for Medical Research Involving Human Subjects, under the responsibility of the authors and of the Auditorium della Compagnia Montecastelli association. Consent was provided by the participants and, in the case of minors, by their parents who were present during the experiments. Since this is not a medical research and it is not an invasive experiment, we did not ask an official ethics committee to formally approve the experiment.

Supplementary Material

A sample of the collected corpus is downloadable through the D4Science e-Infrastructure at https://data.d4science.org/shub/E_dE9JVUw4Z1dFeWtIUG9xMnk0R09PVlNzU28rdnlvYTBEMDlnNkczNWlxdXRtNjA4YWl3b2RPZHNxdTlVN3BxZg==

The services used for this research are freely usable after registration on the D4Science cloud computing platform at the following links:

https://services.d4science.org/group/scalabledatamining/data-miner?OperatorId=org.gcube.dataanalysis.wps.statisticalmanager.synchserver.mappedclasses.transducerers.FEED_FORWARD_NEURAL_NETWORK_REGRESSOR

https://services.d4science.org/group/scalabledatamining/data-miner?OperatorId=org.gcube.dataanalysis.wps.statisticalmanager.synchserver.mappedclasses.transducerers.FEED_FORWARD_NEURAL_NETWORK_TRAINER

The source code is available at http://svn.research-infrastructures.eu/public/d4science/gcube/trunk/data-analysis/EcologicalEngine/src/main/java/org/gcube/dataanalysis/ecoengine/models/

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Coro, G., Masetti, G., Bonhoeffer, P., Betcher, M. (2019). Distinguishing Violinists and Pianists Based on Their Brain Signals. In: Tetko, I., Kůrková, V., Karpov, P., Theis, F. (eds) Artificial Neural Networks and Machine Learning – ICANN 2019: Theoretical Neural Computation. ICANN 2019. Lecture Notes in Computer Science(), vol 11727. Springer, Cham. https://doi.org/10.1007/978-3-030-30487-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30487-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30486-7

  • Online ISBN: 978-3-030-30487-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics