Skip to main content

Light-Weight Edge Enhanced Network for On-orbit Semantic Segmentation

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2019: Deep Learning (ICANN 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11728))

Included in the following conference series:

Abstract

On-orbit semantic segmentation can produce the target image tile or image description to reduce the pressure on transmission resources of satellites. In this paper, we propose a fully convolutional network for on-orbit semantic segmentation, namely light-weight edge enhanced network (LEN). For the model to be pruned, we present a new model pruning strategy based on unsupervised clustering. The method is performed according to the \(l_1\)-norm of each filter in the convolutional layer. And it effectively guides the pruning of filters and corresponding feature maps in a short time. In addition, the LEN uses a trainable edge enhanced module called enhanced domain transform to further optimize segmentation performance. The module fully exploits multi-level information of the object to generate the edge map and performs edge-preserving filtering on the coarse segmentation. Experimental results suggest that the models produce competitive results while containing only 1.53 M and 1.66 M parameters respectively on two public datasets: Inria Aerial Image Labeling Dataset and Massachusetts Buildings Dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maggiori, E., Tarabalka, Y., Charpiat, G., Alliez, P.: Can semantic labeling methods generalize to any city? The Inria aerial image labeling benchmark. In: IEEE IGARSS, pp. 3226–3229 (2017). https://doi.org/10.1109/IGARSS.2017.8127684

  2. Bischke, B., Helber, P., et al.: Multi-task learning for segmentation of building footprints with deep neural networks. arXiv preprint: arXiv:1709.05932 (2017)

  3. Khalel, A., El-Saban, M.: Automatic pixelwise object labeling for aerial imagery using stacked U-Nets. arXiv preprint: arXiv:1803.04953 (2018)

  4. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for efficient neural network. In: Advances in NIPS, pp. 1135–1143 (2015)

    Google Scholar 

  5. Zhou, H., Alvarez, J.M., Porikli, F.: Less is more: towards compact CNNs. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016, Part IV. LNCS, vol. 9908, pp. 662–677. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_40

    Chapter  Google Scholar 

  6. Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H.: Learning structured sparsity in deep neural networks. In: Advances in NIPS, pp. 2074–2082 (2016)

    Google Scholar 

  7. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient ConvNets. In: International Conference on Learning Representations (2017)

    Google Scholar 

  8. Lin, G., Milan, A., Shen, C., Reid, I.: RefineNet: multi-path refinement networks for high-resolution semantic segmentation. In: Proceedings of the IEEE Conference on CVPR, pp. 1925–1934 (2017). https://doi.org/10.1109/CVPR.2017.549

  9. Bertasius, G., Shi, J., Torresani, L.: High-for-low and low-for-high: efficient boundary detection from deep object features and its applications to high-level vision. In: ICCV, pp. 504–512 (2015). https://doi.org/10.1109/ICCV.2015.65

  10. Chen, L.C., Barron, J.T., Papandreou, G., Murphy, K., Yuille, A.L.: Semantic image segmentation with task-specific edge detection using CNNs and a discriminatively trained domain transform. In: Proceedings of the IEEE Conference on CVPR, pp. 4545–4554 (2016). https://doi.org/10.1109/CVPR.2016.492

  11. Hinton, G.E., Mnih, V.: Machine learning for aerial image labeling (2013)

    Google Scholar 

  12. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. PAMI 40(4), 834–848 (2018)

    Article  Google Scholar 

  13. Hu, J., Li, L., Lin, Y., Wu, F., Zhao, J.: A Comparison and Strategy of Semantic Segmentation on Remote Sensing Images. arXiv preprint: arXiv:1905.10231 (2019)

  14. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1(14), pp. 281–297 (1967)

    Google Scholar 

  15. Bezdek, J.C., Ehrlich, R., Full, W.: FCM: the fuzzy c-means clustering algorithm. Comput. Geosci. 10(2–3), 191–203 (1984)

    Article  Google Scholar 

  16. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD 1996, vol. 34, pp. 226–231 (1996)

    Google Scholar 

  17. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987). https://doi.org/10.1016/0377-0427(87)90125-7

    Article  MATH  Google Scholar 

  18. Tibshirani, R., Walther, G., Hastie, T.: Estimating the number of clusters in a data set via the gap statistic. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 63(2), 411–423 (2001). https://doi.org/10.1111/1467-9868.00293

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, Y., Cheng, M. M., Hu, X., Wang, K., Bai, X.: Richer convolutional features for edge detection. In: CVPR, pp. 3000–3009 (2017). https://doi.org/10.1109/CVPR.2017.622

  20. Everingham, M., Eslami, S.A., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The Pascal visual object classes challenge: a retrospective. Int. J. Comput. Vis. 111(1), 98–136 (2015). https://doi.org/10.1007/s11263-014-0733-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junxing Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, J., Li, L., Lin, Y., Wu, F., Zhao, J. (2019). Light-Weight Edge Enhanced Network for On-orbit Semantic Segmentation. In: Tetko, I., Kůrková, V., Karpov, P., Theis, F. (eds) Artificial Neural Networks and Machine Learning – ICANN 2019: Deep Learning. ICANN 2019. Lecture Notes in Computer Science(), vol 11728. Springer, Cham. https://doi.org/10.1007/978-3-030-30484-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30484-3_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30483-6

  • Online ISBN: 978-3-030-30484-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics