Skip to main content

DeepTrackNet: Camera Based End to End Deep Learning Framework for Real Time Detection, Localization and Tracking for Autonomous Vehicles

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1039))

Abstract

Vehicle detection and tracking in real time remains as the most challenging tasks for the autonomous vehicles and mobile robots. The designed algorithms should have less latency and with high accuracy and performance. This paper proposed a unified end to end deep learning framework for real-time detection, localization and tracking for autonomous vehicles called DeepTrackNet. In the proposed DeepTrackNet architecture Mobilenet SSD is used for vehicle detection, localization and deep regression network is used for vehicle tracking. Based on the experimental analysis performed we infer that the proposed DeepTrackNet architecture has produced satisfactory results for real-time vehicle detection and tracking on an Nvidia Jetson embedded computing platform using monocular camera with a reasonable latency. Mobilenet SSD took 84 (ms) median detection time and deep regression tracker has the least overall average failure frames at 4.388 on the VTB TB-100 dataset (http://cvlab.hanyang.ac.kr/tracker_benchmark/datasets.html). The code along with detailed results are available in the GitHub repository (https://github.com/dineshresearch/DeepTrackNet).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Geronimo, D., et al.: Survey of pedestrian detection for advanced driver assistance systems. IEEE Trans. Pattern Anal. Mach. Intell. 32(7), 1239–1258 (2010)

    Article  Google Scholar 

  2. Geiger, A., et al.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. 32(11), 1231–1237 (2013)

    Article  Google Scholar 

  3. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the KITTI vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2012)

    Google Scholar 

  4. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  5. Meyer, G.G., Främling, K., Holmström, J.: Intelligent products: a survey. Comput. Ind. 60(3), 137–148 (2009)

    Article  Google Scholar 

  6. Udalski, A.: The optical gravitational lensing experiment. Real time data analysis systems in the OGLE-III survey. arXiv preprint arXiv:astro-ph/0401123 (2004)

  7. Leonard, J.J., Durrant-Whyte, H.F.: Mobile robot localization by tracking geometric beacons. IEEE Trans. Robot. Autom. 7(3), 376–382 (1991)

    Article  Google Scholar 

  8. Sapankevych, N.I., Sankar, R.: Time series prediction using support vector machines: a survey. IEEE Comput. Intell. Mag. 4(2), 24–38 (2009)

    Article  Google Scholar 

  9. Lienhart, R.: Reliable transition detection in videos: a survey and practitioner’s guide. Int. J. Image Graph. 1(03), 469–486 (2001)

    Article  Google Scholar 

  10. Ma, C., et al.: Hierarchical convolutional features for visual tracking. In: Proceedings of the IEEE International Conference on Computer Vision (2015)

    Google Scholar 

  11. Li, X.: A survey of appearance models in visual object tracking. ACM Trans. Intell. Syst. Technol. (TIST) 4(4), 58 (2013)

    Google Scholar 

  12. Kulkarni, V.Y., Sinha, P.K.: Random forest classifiers: a survey and future research directions. Int. J. Adv. Comput. 36(1), 1144–1153 (2013)

    Google Scholar 

  13. Li, Y., Zhu, J.: A scale adaptive kernel correlation filter tracker with feature integration. In: European Conference on Computer Vision. Springer, Cham (2014)

    Google Scholar 

  14. Smeulders, A.W.M., Chu, D.M., Cucchiara, R., Calderara, S., Dehghan, A., Shah, M.: Visual tracking: an experimental survey. IEEE Trans. Pattern Anal. Mach. Intell. (1), 1 (2013)

    Google Scholar 

  15. Yang, H., Shao, L., Zheng, F., Wang, L., Song, Z.: Recent advances and trends in visual tracking: a review. Neurocomputing 74(18), 3823–3831 (2011)

    Article  Google Scholar 

  16. Zhang, K., Zhang, L., Yang, M.-H.: Real-time compressive tracking. In: European Conference on Computer Vision, pp. 864–877. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Kalal, Z., Mikolajczyk, K., Matas, J., et al.: Tracking-learning-detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1409 (2012)

    Article  Google Scholar 

  18. Babenko, B., Yang, M.-H., Belongie, S.: Robust object tracking with online multiple instance learning. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1619–1632 (2011)

    Article  Google Scholar 

  19. Saffari, A., Leistner, C., Santner, J., Godec, M., Bischof, H.: On-line random forests. In: 2009 IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1393–1400. IEEE (2009)

    Google Scholar 

  20. Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via on-line boosting. In: BMVC, vol. 1, p. 6 (2006)

    Google Scholar 

  21. Held, D., Thrun, S., Savarese, S.: Learning to track at 100 fps with deep regression networks. In: European Conference on Computer Vision. Springer, Cham (2016)

    Chapter  Google Scholar 

  22. Deepika, N., Variyar, V.V.S.: Obstacle classification and detection for vision based navigation for autonomous driving. In: 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI). IEEE (2017)

    Google Scholar 

  23. Jose, A., Thodupunoori, H., Nair, B.B.: A novel traffic sign recognition system combining Viola–Jones framework and deep learning. In: Soft Computing and Signal Processing, pp. 507–517. Springer, Singapore (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh Kumar Amara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Amara, D.K., Karthika, R., Soman, K.P. (2020). DeepTrackNet: Camera Based End to End Deep Learning Framework for Real Time Detection, Localization and Tracking for Autonomous Vehicles. In: Pandian, A., Ntalianis, K., Palanisamy, R. (eds) Intelligent Computing, Information and Control Systems. ICICCS 2019. Advances in Intelligent Systems and Computing, vol 1039. Springer, Cham. https://doi.org/10.1007/978-3-030-30465-2_34

Download citation

Publish with us

Policies and ethics