Skip to main content

Evolutionary Algorithm Based Robust Fixed Structure Controller for pH in Sodium Chlorate Process

  • Conference paper
  • First Online:
Intelligent Computing, Information and Control Systems (ICICCS 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1039))

  • 1120 Accesses

Abstract

PID Controllers are used in almost 95% of control loops in the most process industry. Since the design of a controller for an industrial system is complex due to the presence of model uncertainties, nonlinearities, and disturbances, these controllers are usually not tuned optimally and performance is compromised. Robust fixed structure control is a remedy to the problem, and such a controller design is an optimization problem, characterized by nonlinear multimodal large pursuit space, tight constraints, and expensive objective function. The classic optimization method is not appropriate here as a solution set is to be computed. Evolutionary algorithm, a robust search, and optimization method can handle this problem. Covariance Matrix Adapted Evolutionary strategy is successfully utilised to design robust PID controller for Sodium chlorate process. The performance in terms Integral Square Error (ISE) for set point tracking, robust stability and disturbance attenuation was found satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ho, S.-J., Ho, S.-Y., Shu, L.-S.: IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 34(5), 588–600 (2004). https://doi.org/10.1109/tsmca.2004.832834

    Article  Google Scholar 

  2. Viswanathan, K.: J. Electrochem. Soc. 131(7), 1551 (1984). https://doi.org/10.1149/1.2115908

    Article  Google Scholar 

  3. Vogt, H.: J. Electrochem. Soc. 128(2), 29C–32C (1981). https://doi.org/10.1149/1.2127407

    Article  Google Scholar 

  4. Endrődi, B., Sandin, S., Smulders, V., Simic, N., Wildlock, M., Mul, G., Mei, B.T., Cornell, A.: J. Clean. Prod. 182, 529–537 (2018). https://doi.org/10.1016/j.jclepro.2018.02.071

    Article  Google Scholar 

  5. Gordon, G., Tachlyashlki, S.: Environ. Sci. Technol. 25(3), 468–474 (1991). https://doi.org/10.1021/es00015a014

    Article  Google Scholar 

  6. Kriem, L.S.: Thesis (2017)

    Google Scholar 

  7. Tadeo, F., López, O.P., Alvarez, T.: IEEE Trans. Control Syst. Technol. 8(2), 236–246 (2000). https://doi.org/10.1109/87.826795

    Article  Google Scholar 

  8. Hermansson, A.W., Syafiie, S.: Control Eng. Pract. 45, 98–109 (2015). https://doi.org/10.1016/j.conengprac.2015.09.005

    Article  Google Scholar 

  9. Lakshmi Narayanan, N.R., Krishnaswamy, P.R., Rangaiah, G.P.: Chem. Eng. Sci. 52(18), 3067–3074 (1997). https://doi.org/10.1016/s0009-2509(97)00130-9

    Article  Google Scholar 

  10. Li, M., Wang, F., Gao, F.: Ind. Eng. Chem. Res. 40(12), 2660–2667 (2001). https://doi.org/10.1021/ie990715e

    Article  Google Scholar 

  11. Shabani, R., Sedigh, A.K., Salahshoor, K.: 497–500 (2010). https://doi.org/10.1109/iccas.2010.5669969

  12. Mwembeshi, M.M., Kent, C.A., Salhi, S.: Comput. Chem. Eng. 28(9), 1743–1757 (2004). https://doi.org/10.1016/j.compchemeng.2004.03.002

    Article  Google Scholar 

  13. Kumbasar, T., Eksin, I., Guzelkaya, M., Yesil, E.: ISA Trans. 51(2), 277–287 (2012). https://doi.org/10.1016/j.isatra.2011.10.007

    Article  Google Scholar 

  14. Mota, A.S., Menezes, M.R., Schmitz, J.E., Da Costa, T.V., Da Silva, F.V., Franco, I.C.: Chem. Eng. Commun. 203(4), 516–526 (2016). https://doi.org/10.1080/00986445.2015.1048799

    Article  Google Scholar 

  15. Kambale, S.D., George, S., Zope, R.G.: Int. Res. J. Eng. Technol. (1), 2395–2456 (2015)

    Google Scholar 

  16. Ho, M.T., Lin, C.Y.: IEEE Trans Autom. Control 48(8), 1404–1409 (2003). https://doi.org/10.1109/TAC.2003.815028

    Article  MathSciNet  Google Scholar 

  17. Apkarian, P., Noll, D., Tuan, H.D.: Int. J. Robust Nonlinear Control. 13(12), 1137–1148 (2003). https://doi.org/10.1002/rnc.807

    Article  Google Scholar 

  18. Saeki, M.: IFAC Proc. 16, 415–420 (2005). https://doi.org/10.1016/j.automatica.2005.07.006

    Article  Google Scholar 

  19. Saeki, M.: Automatica 42(1), 93–100 (2006). https://doi.org/10.1016/j.automatica.2005.07.006

    Article  MathSciNet  Google Scholar 

  20. Tempo, R., Calafiore, G., Dabbene, F.: Algorithms for Analysis and Control of Uncertain Systems. Springer (2004)

    Google Scholar 

  21. Fujisaki, Y., Oishi, Y., Tempo, R.: Mixed Deterministic/Randomized Methods for Fixed Order Controller Design. IEEE Trans. Autom. Control 53(9) (2008)

    Article  MathSciNet  Google Scholar 

  22. Chen, B., Cheng, Y., Lee, C.: Genetic approach to mixed H2/H, optimal PID control. IEEE Control Syst., 0272–1708 (1995)

    Google Scholar 

  23. Sen Chen, B., Cheng, Y.M.: IEEE Trans. Control Syst. Technol. 6(6), 707–718 (1998). https://doi.org/10.1109/87.726532

    Article  Google Scholar 

  24. Kitsios, I., Pimenides, T., Groumpos, P.: (3), 1196–1201 (2002). https://doi.org/10.1109/cca.2001.974035

  25. Tan, W., Chen, T., Marquez, H.J.: Asian J. Control. 4(4), 439–451 (2010). https://doi.org/10.1111/j.1934-6093.2002.tb00085.x

    Article  Google Scholar 

  26. Shu, L.-S., Ho, S.-Y., Ho, S.-J., Huang, H.-L., Hung, M.-H.: IEEE Trans. Control Syst. Technol. 13(6), 1119–1124 (2005). https://doi.org/10.1109/tcst.2005.857403

    Article  Google Scholar 

  27. Iruthayarajan, M.W., Baskar, S.: Expert Syst. Appl. 36(5), 9159–9167 (2009). https://doi.org/10.1016/j.eswa.2008.12.033

    Article  Google Scholar 

  28. Mohaideen Abdul Kadhar, K., Baskar, S.: Appl. Soft Comput. J. 34, 337–348 (2015). https://doi.org/10.1016/j.asoc.2015.05.022

    Article  Google Scholar 

  29. Bhaskar, V., Gupta, S.K., Ray, A.K.: Rev. Chem. Eng. 16, 1–54 (2000). https://doi.org/10.1515/REVCE.2000.16.1.1

    Article  Google Scholar 

  30. Büche, D., Hansen, N., Ocenasek, J., Koumoutsakos, P., Kern, S., Müller, S.D.: Nat. Comput. 3(3), 355–356 (2004). https://doi.org/10.1023/b:naco.0000036904.41423.1c

    Article  Google Scholar 

  31. Sadeghi, M., Kalantar, M.: J. Renew. Sustain. Energy. 6(6), 1–24 (2014). https://doi.org/10.1063/1.4901087

    Article  Google Scholar 

  32. Manoharan, P.S., Kannan, P.S., Baskar, S., Willjuice Iruthayarajan, M., Dhananjeyan, V.: Eng. Optim. 41(7), 635–657 (2009). https://doi.org/10.1080/03052150902738768

    Article  Google Scholar 

  33. Sreepriya, S., Baskar, S., Willjuice Iruthayarajan, M.: In: 2010 2nd International Conference on Computing, Communication and Networking Technologies, ICCCNT 2010, no. (LMI), pp. 1–4 (2010). https://doi.org/10.1109/icccnt.2010.5591817

  34. Jeyadevi, M.W.I.S., Bhaskar, S.: Eur. Trans. Electr. Power 21(E1), 1343–1360 (2011). https://doi.org/10.1002/etep

    Article  Google Scholar 

  35. Manoharan, P.S., Kannan, P.S., Bhaskar, S., Iruthayarajan, M.W.: Gener. Transm. Distrib. IET 1(2), 324 (2007). https://doi.org/10.1049/iet-gtd

    Article  Google Scholar 

  36. Adam, L.C., Gordon, G.: Inorg. Chem. 38(6), 1299–1304 (1999). https://doi.org/10.1021/ic980020q

    Article  Google Scholar 

  37. Nair, S.S.: Int. J. Eng. Sci. Technol. 3(1), 122–138 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sreepriya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sreepriya, S., Aparna, K., Vinila, M.L. (2020). Evolutionary Algorithm Based Robust Fixed Structure Controller for pH in Sodium Chlorate Process. In: Pandian, A., Ntalianis, K., Palanisamy, R. (eds) Intelligent Computing, Information and Control Systems. ICICCS 2019. Advances in Intelligent Systems and Computing, vol 1039. Springer, Cham. https://doi.org/10.1007/978-3-030-30465-2_32

Download citation

Publish with us

Policies and ethics