Skip to main content

Quasi-Passive Lower and Upper Extremity Robotic Exoskeleton for Strengthening Human Locomotion

  • Chapter
  • First Online:
Sustainable Innovation

Part of the book series: International Marketing and Management Research ((INMAMAR))

Abstract

Most of the robotic exoskeletons available today are either lower extremity or upper extremity devices targeting individual orthotic (elbow, knee, and ankle) joints. However, there are a few which target both lower and upper extremities. This chapter aims to propose a design for a wearable quasi-passive lower and upper extremity robotic exoskeleton (QLUE-REX) system, targeting disabled users and aged seniors. This exoskeleton system aims to improve mobility, assist walking, improve and enhance muscle strength, and help people with leg/arm disabilities. QLUE-REX combines elbow, knee, and ankle joints with options to synchronize individual joints’ movements to achieve the following: (1) assist in lifting loads of 30–40 kilograms, (2) assist in walking, (3) easy and flexible to wear without any discomfort, and (4) be able to learn and adapt along with storing time-stamped sensor data on its exoskeleton storage media for predicting/correcting users’ movements and share data with health professionals. The research’s main objective is to conceptualize a design for QLUE-REX system. QLUE-REX will be a feasible modular-type wearable system that incorporates orthotic elbow, knee, and ankle joints effectively in either synchronous or asynchronous modes depending on the users’ needs. It will utilize human-walking analysis, data sensing and estimation technology, and measurement of the electromyography signals of user’s muscles, exploiting biomechanical principles of human-machine interface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 64.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almekkawy, M., Chen, J., Ellis, M., Haemmerich, D., Holmes, D., Linte, C., … Zderic, V. (2019). Therapeutic systems and technologies: State-of-the-art, applications, opportunities and challenges. IEEE Reviews in Biomedical Engineering.

    Google Scholar 

  • Arnold, C. M., & Faulkner, R. A. (2002). The history of falls and the association of the timed up and go test to falls and near-falls in older adults with hip osteoarthritis. Journal of the American Geriatrics Society, 50, 671–678.

    Article  Google Scholar 

  • Bacsu, J. R., Jeffery, B., Johnson, S., Martz, D., Novik, N., & Abonyi, S. (2012). Healthy aging in place: Supporting rural seniors’ health needs. Online Journal of Rural Nursing and Health Care, 12(2), 77–87.

    Google Scholar 

  • Brown, M. (2012). xOS 2 Exoskeleton [PDF document]. Retrieved May 15, 2019, from http://www.ele.uri.edu/Courses/bme281/F12/TimothyB_2.pdf

  • Chu, A., Kazerooni, H., & Zoss, A. (2005). On the biomimetic design of the Berkeley lower extremity exoskeleton (BLEEX). Proceedings of Robotics and Automation, ICRA 2005, Proceedings of the 2005 IEEE International Conference on Intelligent Robots and Systems (pp. 4345–4352). https://doi.org/10.1109/ROBOT.2005.1570789

  • Cozen, J. A. (1999). Robotic assistance of an active upper limb exercise in neurologically impaired patients. IEEE Transactions on Rehabilitation Engineering, 7(2), 254–256.

    Article  Google Scholar 

  • Cyberdyne. (2015). What’s HAL®? Retrieved May 15, 2019, from http://www.cyberdyne.jp/english/products/HAL/index.html

  • Dollar, A. M., & Herr, H. (2008). Design of a quasi-passive knee exoskeleton to assist running. Proceedings from Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on (pp. 747–754). Nice, France: IEEE/RSJ. https://doi.org/10.1109/IROS.2008.4651202

  • European Space Agency. (2014). The ESA Exoskeleton. Retrieved May 15, 2019, from http://www.esa.int/Our_Activities/Space_Engineering_Technology/Automation_and_Robotics/The_ESA_Exoskeleton

  • Ferguson, P. W., Dimapasoc, B., Shen, Y., & Rosen, J. (2018, October). Design of a hand exoskeleton for use with upper limb exoskeletons. InInternational symposium on wearable robotics (pp. 276–280). Cham: Springer.

    Google Scholar 

  • Hesse, S., Schmidt, H., Werner, C., & Bardeleben, A. (2003). Upper and lower extremity robotic devices for rehabilitation and for studying motor control. Current Opinion in Neurology, 16(6), 705–710.

    Article  Google Scholar 

  • Hogan, N., Aisen, M. L., & Volpe, B. T. (1998). Robot-aided neurorehabilitation.Rehabilitation Engineering, IEEE Transactions on, 6(1), 75–87. https://doi.org/10.1109/86.662623

    Article  Google Scholar 

  • Honda. (2009). Honda – Walk Assist. Retrieved May 15, 2019, from http://corporate.honda.com/innovation/walk-assist/

  • Iezzoni, L. I. (2003). When walking fails. Berkeley, CA: University of California Press.

    Google Scholar 

  • Kilicarslan, A., Prasad, S., Grossman, R. G., & Contreras-Vidal, J. L. (2013, July). High accuracy decoding of user intentions using EEG to control a lower-body exoskeleton. In 2013 35th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 5606–5609). IEEE.

    Google Scholar 

  • Krebs, H., Ferraro, M., Buerger, S. P., Newberry, M. J., Makiyami, A., Sandmann, M., … Hogan, N. (2004). Rehabilitation robotics: Pilot trial of a spatial extension for MIT-Manus. Journal of NeuroEngineering and Rehabilitation, 1(5). http://dx.doi.org/10.1186%2F1743-0003-1-5

    Article  Google Scholar 

  • Krucoff, M. O., Rahimpour, S., Slutzky, M. W., Edgerton, V. R., & Turner, D. A. (2016). Enhancing nervous system recovery through neurobiologics, neural interface training, and neurorehabilitation. Frontiers in Neuroscience, 10, 584.

    Article  Google Scholar 

  • Leveille, S. G., Bean, J., Bandeen-Roche, K., Jones, R., Hochberg, M., & Guralnik, J. M. (2002). Musculoskeletal pain and risk for falls in older disabled women living in the community. Journal of the American Geriatrics Society, 50(4), 671–678.

    Article  Google Scholar 

  • Lewis, C. L., & Ferris, D. P. (2011). Invariant hip moment patterns when walking with a robotic hip exoskeleton. Journal of Biomechanics, 44(5), 789–793.

    Article  Google Scholar 

  • Li, G., Fang, Q., Xu, T., Zhao, J., Cai, H., & Zhu, Y. (2019). Inverse kinematic analysis and trajectory planning of a modular upper limb rehabilitation exoskeleton. Technology and Health Care, (Preprint), 1–10.

    Google Scholar 

  • Lockheed Martin. (2015). HULC. Retrieved May 15, 2019, from http://www.lockheedmartin.com/us/products/exoskeleton/hulc.html

  • Lum, P. S., Burgar, C. G., Van der Loos, M., Shor, P., Majmundar, M., & Yap, R. (2005). The MIME robotic system for upper-limb neuro-rehabilitation: Results from a clinical trial in subacute stroke. In Proceedings from ICCOR 9th International Conference on Rehabilitation Robotics, 2005 (pp. 511–514). Chicago, IL: IEEE. https://doi.org/10.1109/ICORR.2005.1501153

    Google Scholar 

  • Morone, G., Paolucci, S., Cherubini, A., De Angelis, D., Venturiero, V., Coiro, P., & Iosa, M. (2017). Robot-assisted gait training for stroke patients: Current state of the art and perspectives of robotics. Neuropsychiatric Disease and Treatment, 13, 1303.

    Article  Google Scholar 

  • Nef, T., Guidali, M., & Riener, R. (2009). ARMin III–arm therapy exoskeleton with an ergonomic shoulder actuation. Applied Bionics and Biomechanics, 6(2), 127–142.

    Article  Google Scholar 

  • van Ninhuijs, B., van der Heide, L. A., Jansen, J. W., Gysen, B. L. J., van der Pijl, D. J., & Lomonova, E. A. (2013). Overview of actuated arm support systems and their applications. Actuators, 2(4), 86–110. https://doi.org/10.3390/act2040086

    Article  Google Scholar 

  • Reinkensmeyer, D. J., Kahn, L. E., Averbuch, M., McKenna-Cole, A., Schmit, B. D., & Rymer, W. Z. (2000). Understanding and treating arm movement impairment after chronic brain injury: Progress with the ARM guide. Journal of Rehabilitation Research and Development, 37(6), 653–662. Retrieved May 15, 2019, from http://www.rehab.research.va.gov/jour/00/37/6/pdf/reinkensmeyer.pdf

    Google Scholar 

  • Rupal, B. S., Rafique, S., Singla, A., Singla, E., Isaksson, M., & Virk, G. S. (2017). Lower-limb exoskeletons: Research trends and regulatory guidelines in medical and non-medical applications. International Journal of Advanced Robotic Systems, 14(6). http://dx.doi.org/10.1729881417743554

  • Sanchez, R. J., Wolbrecht, E., Smith, R., Liu, J., Rao, S., Cramer, S., … & Reinkensmeyer, D. J. (2005, June). A pneumatic robot for re-training arm movement after stroke: Rationale and mechanical design. In 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005 (pp. 500–504). IEEE.

    Google Scholar 

  • Shen, Y., Ma, J., Dobkin, B., & Rosen, J. (2018, July). Asymmetric dual arm approach for post stroke recovery of motor functions utilizing the EXO-UL8 exoskeleton system: A pilot study. In 2018 40th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 1701–1707). IEEE.

    Google Scholar 

  • Silveira, A. T., Souza, M. A. D., Fernandes, B. L., & Nohama, P. (2018). From the past to the future of therapeutic orthoses for upper limbs rehabilitation. Research on Biomedical Engineering, 34(4), 368–380.

    Article  Google Scholar 

  • Singh, H., Unger, J., Zariffa, J., Pakosh, M., Jaglal, S., Craven, B. C., & Musselman, K. E. (2018). Robot-assisted upper extremity rehabilitation for cervical spinal cord injuries: A systematic scoping review. Disability and Rehabilitation: Assistive Technology, 13(7), 704–715.

    Google Scholar 

  • Stokes, J., & Lindsay, J. (1996). Major causes of death and hospitalization in Canadian seniors. Chronic Disease in Canada, 17, 63–73.

    Google Scholar 

  • Taylor, D. M. (2018). Americans with disabilities: 2014. Household Economic Studies. Retrieved July 28, 2019, from https://www.census.gov/content/dam/Census/library/publications/2018/demo/p70-152.pdf

  • Yu, S. N., Lee, H. D., Lee, S. H., Kim, W. S., Han, J. S., & Han, C. S. (2012). Design of an under-actuated exoskeleton system for walking assist while load carrying. Advanced Robotics, 26(5–6), 561–580.

    Article  Google Scholar 

  • Zoss, A., Kazerooni, H., & Chu, A. (2005). On the mechanical design of the Berkeley Lower Extremity Exoskeleton (BLEEX). In Proceedings from Intelligent Robots and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ International Conference on (pp. 3465–3472). Edmonton, AB: IEEE. https://doi.org/10.1109/IROS.2005.1545453

    Google Scholar 

  • Zaroug, A., Proud, J. K., Lai, D. T., Mudie, K., Billing, D., & Begg, R. (2019). Overview of Computational Intelligence (CI) techniques for powered exoskeletons. In Computational intelligence in sensor networks (pp. 353–383). Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arora, A., McIntyre, J.R. (2020). Quasi-Passive Lower and Upper Extremity Robotic Exoskeleton for Strengthening Human Locomotion. In: Saxena Arora, A., Bacouel-Jentjens, S., Sepehri, M., Arora, A. (eds) Sustainable Innovation. International Marketing and Management Research. Palgrave Pivot, Cham. https://doi.org/10.1007/978-3-030-30421-8_1

Download citation

Publish with us

Policies and ethics