Skip to main content

Macular Dystrophies

  • Chapter
  • First Online:
Handbook of Clinical Electrophysiology of Vision

Abstract

This chapter summarizes the application of electroretinogram and/or electrooculogram in patients with Stargardt’s disease, fundus flavimaculatus, X-linked retinoschisis, vitelliform macular dystrophy (Best’s disease), pattern dystrophies, macular pattern dystrophy, Doyne’s honeycomb macular dystrophy, occult macular dystrophy, and North Carolina macular dystrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bax NM. The portal for rare diseases and orphan drugs. Orphanet: About Orphan Drugs. 2019. Available from: www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=GB&Expert=827 http://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=GB&Expert=827.

  2. Allikmets R, et al. Mutation of the Stargardt disease gene (ABCR) in age-related macular degeneration. Science. 1997;277(5333):1805–7.

    CAS  PubMed  Google Scholar 

  3. Michaelides M, Hunt DM, Moore AT. The genetics of inherited macular dystrophies. J Med Genet. 2003;40(9):641–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Boon CJ, et al. Mutations in the peripherin/RDS gene are an important cause of multifocal pattern dystrophy simulating STGD1/fundus flavimaculatus. Br J Ophthalmol. 2007;91(11):1504–11.

    PubMed  PubMed Central  Google Scholar 

  5. Cideciyan AV, et al. Mutations in ABCA4 result in accumulation of lipofuscin before slowing of the retinoid cycle: a reappraisal of the human disease sequence. Hum Mol Genet. 2004;13(5):525–34.

    CAS  PubMed  Google Scholar 

  6. Fishman GA, et al. Variation of clinical expression in patients with Stargardt dystrophy and sequence variations in the ABCR gene. Arch Ophthalmol. 1999;117(4):504–10.

    CAS  PubMed  Google Scholar 

  7. Kuniyoshi K, et al. Multifocal electroretinograms in Stargardt’s disease/fundus flavimaculatus. Ophthalmologica. 2014;232(2):118–25.

    PubMed  Google Scholar 

  8. Haas J. Ueber das zusammenvorkommen von Veranderungen der retina und choroidea. Arch Augenheilkd. 1898;37:343–8.

    Google Scholar 

  9. George ND, Yates JR, Moore AT. X linked retinoschisis. Br J Ophthalmol. 1995;79(7):697–702.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu WW, Molday RS. Defective discoidin domain structure, subunit assembly, and endoplasmic reticulum processing of retinoschisin are primary mechanisms responsible for X-linked retinoschisis. J Biol Chem. 2003;278(30):28139–46.

    CAS  PubMed  Google Scholar 

  11. Sieving PA, Yashar BM, Ayyagari R. Juvenile retinoschisis: a model for molecular diagnostic testing of X-linked ophthalmic disease. Trans Am Ophthalmol Soc. 1999;97:451–64; discussion 464–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Cukras CA, et al. Analysis of anatomic and functional measures in X-linked retinoschisis. Invest Ophthalmol Vis Sci. 2018;59(7):2841–7.

    PubMed  PubMed Central  Google Scholar 

  13. Sieving PA, MacDonald IM, Chan S. X-linked juvenile retinoschisis. In: Adam MP, et al., editors. GeneReviews(R). University of Washington, Seattle; 2014.

    Google Scholar 

  14. Iannaccone A. Optical coherence tomography in rare pediatric cases. Retina Today. 2012(September). pp. 1–3.

    Google Scholar 

  15. Iannaccone A, et al. An unusual X-linked retinoschisis phenotype and biochemical characterization of the W112C RS1 mutation. Vision Res. 2006;46(22):3845–52.

    CAS  PubMed  Google Scholar 

  16. Ghajarnia M, Gorin MB. Acetazolamide in the treatment of X-linked retinoschisis maculopathy. Arch Ophthalmol. 2007;125(4):571–3.

    PubMed  Google Scholar 

  17. Miyake Y, et al. Focal macular electroretinogram in X-linked congenital retinoschisis. Invest Ophthalmol Vis Sci. 1993;34(3):512–5.

    CAS  PubMed  Google Scholar 

  18. Kim LS, et al. Multifocal ERG findings in carriers of X-linked retinoschisis. Doc Ophthalmol. 2007;114(1):21–6.

    PubMed  Google Scholar 

  19. Huang S, et al. The multifocal electroretinogram in X-linked juvenile retinoschisis. Doc Ophthalmol. 2003;106(3):251–5.

    PubMed  Google Scholar 

  20. White K, Marquardt A, Weber BH. VMD2 mutations in vitelliform macular dystrophy (Best disease) and other maculopathies. Hum Mutat. 2000;15(4):301–8.

    CAS  PubMed  Google Scholar 

  21. Marchant D, et al. New VMD2 gene mutations identified in patients affected by Best vitelliform macular dystrophy. J Med Genet. 2007;44(3):e70.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Boon CJ, et al. The spectrum of ocular phenotypes caused by mutations in the BEST1 gene. Prog Retin Eye Res. 2009;28(3):187–205.

    CAS  PubMed  Google Scholar 

  23. Iannaccone A, et al. Autosomal recessive best vitelliform macular dystrophy: report of a family and management of early-onset neovascular complications. Arch Ophthalmol. 2011;129(2):211–7.

    PubMed  Google Scholar 

  24. Burgess R, et al. Biallelic mutation of BEST1 causes a distinct retinopathy in humans. Am J Hum Genet. 2008;82(1):19–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Boon CJ, et al. Autosomal recessive bestrophinopathy: differential diagnosis and treatment options. Ophthalmology. 2013;120(4):809–20.

    PubMed  Google Scholar 

  26. Davidson AE, et al. Missense mutations in a retinal pigment epithelium protein, bestrophin-1, cause retinitis pigmentosa. Am J Hum Genet. 2009;85(5):581–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Renner AB, et al. Late onset is common in best macular dystrophy associated with VMD2 gene mutations. Ophthalmology. 2005;112(4):586–92.

    PubMed  Google Scholar 

  28. Kaufman SJ, et al. Autosomal dominant vitreoretinochoroidopathy. Arch Ophthalmol. 1982;100(2):272–8.

    CAS  PubMed  Google Scholar 

  29. Blair NP, et al. Autosomal dominant vitreoretinochoroidopathy (ADVIRC). Br J Ophthalmol. 1984;68(1):2–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Goldberg MF, et al. Ocular histopathology and immunohistochemical analysis in the oldest known individual with autosomal dominant vitreoretinochoroidopathy. Ophthalmol Retina. 2018;2(4):360–78.

    PubMed  PubMed Central  Google Scholar 

  31. MacDonald IM, Lee T. Best vitelliform macular dystrophy. In: Pagon RA, et al., editors. GeneReviews(R). University of Washington, Seattle; 1993.

    Google Scholar 

  32. Glybina IV, Frank RN. Localization of multifocal electroretinogram abnormalities to the lesion site: findings in a family with Best disease. Arch Ophthalmol. 2006;124(11):1593–600.

    PubMed  Google Scholar 

  33. Lafaut BA, et al. Clinical and electrophysiological findings in autosomal dominant vitreoretinochoroidopathy: report of a new pedigree. Graefes Arch Clin Exp Ophthalmol. 2001;239(8):575–82.

    CAS  PubMed  Google Scholar 

  34. Zhang K, et al. Butterfly-shaped pattern dystrophy: a genetic, clinical, and histopathological report. Arch Ophthalmol. 2002;120(4):485–90.

    PubMed  Google Scholar 

  35. Stone EM, et al. A single EFEMP1 mutation associated with both Malattia Leventinese and Doyne honeycomb retinal dystrophy. Nat Genet. 1999;22(2):199–202.

    CAS  PubMed  Google Scholar 

  36. Haimovici R, et al. Symptomatic abnormalities of dark adaptation in patients with EFEMP1 retinal dystrophy (Malattia Leventinese/Doyne honeycomb retinal dystrophy). Eye (Lond). 2002;16(1):7–15.

    CAS  Google Scholar 

  37. Akahori M, et al. Dominant mutations in RP1L1 are responsible for occult macular dystrophy. Am J Hum Genet. 2010;87(3):424–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Miyake Y, Tsunoda K. Occult macular dystrophy. Jpn J Ophthalmol. 2015;59(2):71–80.

    PubMed  Google Scholar 

  39. Hayashi T, et al. Autosomal dominant occult macular dystrophy with an RP1L1 mutation (R45W). Optom Vis Sci. 2012;89(5):684–91.

    PubMed  Google Scholar 

  40. Kondo M, et al. Occult macular dystrophy in an 11 year old boy. Br J Ophthalmol. 2004;88(12):1602–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Piao CH, et al. Multifocal electroretinogram in occult macular dystrophy. Invest Ophthalmol Vis Sci. 2000;41(2):513–7.

    CAS  PubMed  Google Scholar 

  42. Ahn SJ, et al. Multimodal imaging of occult macular dystrophy. JAMA Ophthalmol. 2013;131(7):880–90.

    PubMed  Google Scholar 

  43. Tsunoda K, et al. Clinical characteristics of occult macular dystrophy in family with mutation of RP1l1 gene. Retina. 2012;32(6):1135–47.

    CAS  PubMed  Google Scholar 

  44. Kondo M, Miyake Y. Assessment of local cone on- and off-pathway function using multifocal ERG technique. Doc Ophthalmol. 2000;100(2–3):139–54.

    CAS  PubMed  Google Scholar 

  45. Kabuto T, et al. A new mutation in the RP1L1 gene in a patient with occult macular dystrophy associated with a depolarizing pattern of focal macular electroretinograms. Mol Vis. 2012;18:1031–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Small KW, et al. North Carolina macular dystrophy and central areolar pigment epithelial dystrophy. One family, one disease. Arch Ophthalmol. 1992;110(4):515–8.

    CAS  PubMed  Google Scholar 

  47. Lefler WH, Wadsworth JA, Sidbury JB Jr. Hereditary macular degeneration and amino-aciduria. Am J Ophthalmol. 1971;71(1 Pt 2):224–30.

    CAS  PubMed  Google Scholar 

  48. Small KW, et al. North Carolina macular dystrophy phenotype in France maps to the MCDR1 locus. Mol Vis. 1997;3:1.

    CAS  PubMed  Google Scholar 

  49. Sauer CG, et al. An ancestral core haplotype defines the critical region harbouring the North Carolina macular dystrophy gene (MCDR1). J Med Genet. 1997;34(12):961–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Reichel MB, et al. Phenotype of a British North Carolina macular dystrophy family linked to chromosome 6q. Br J Ophthalmol. 1998;82(10):1162–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang Z, et al. Clinical characterization and genetic mapping of North Carolina macular dystrophy. Vision Res. 2008;48(3):470–7.

    CAS  PubMed  Google Scholar 

  52. Khurana RN, et al. A reappraisal of the clinical spectrum of North Carolina macular dystrophy. Ophthalmology. 2009;116(10):1976–83.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minzhong Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kheir, W.J. et al. (2019). Macular Dystrophies. In: Yu, M., Creel, D., Iannaccone, A. (eds) Handbook of Clinical Electrophysiology of Vision. Springer, Cham. https://doi.org/10.1007/978-3-030-30417-1_5

Download citation

Publish with us

Policies and ethics