Skip to main content

Electrooculography

  • Chapter
  • First Online:
Handbook of Clinical Electrophysiology of Vision
  • 840 Accesses

Abstract

The electrooculogram (EOG) reflects the standing potential produced by transepithelial potential (TEP) of the retinal pigment epithelium (RPE) at the back of the eye. To record the potential, skin electrodes are attached near the inner and outer canthus of each eye. The standing potential is measured by having the patient move their eyes left and right between alternating LEDs 30° apart. The standing voltage becomes smaller during dark adaption, reaching its lowest potential, the “dark trough”, in about 10 minutes, followed by light adaptation that causes the potential to rise to a peak in about 10 minutes. When the ratio of the amplitude of the “light peak” to that of the “dark trough” (i.e., light peak:dark trough ratio (LP:DT ratio)) is less than 1.7, the EOG is considered as abnormal. The normal value of LP:DT ratio is near 2 or greater. The EOG placement of electrodes is also used for tracking eye movement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marg E. Development of electro-oculography; standing potential of the eye in registration of eye movement. AMA Arch Ophthalmol. 1951;45(2):169–85.

    Article  CAS  PubMed  Google Scholar 

  2. Arden GB, Barrada A, Kelsey JH. New clinical test of retinal function based upon the standing potential of the eye. Br J Ophthalmol. 1962;46(8):449–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Steinberg RH. Interactions between the retinal pigment epithelium and the neural retina. Doc Ophthalmol. 1985;60(4):327–46.

    Article  CAS  PubMed  Google Scholar 

  4. Gallemore RP, Steinberg RH. Effects of DIDS on the chick retinal pigment epithelium. I. Membrane potentials, apparent resistances, and mechanisms. J Neurosci. 1989;9(6):1968–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gallemore RP, Steinberg RH. Light-evoked modulation of basolateral membrane Cl- conductance in chick retinal pigment epithelium: the light peak and fast oscillation. J Neurophysiol. 1993;70(4):1669–80.

    Article  CAS  PubMed  Google Scholar 

  6. Linsenmeier RA, Steinberg RH. Origin and sensitivity of the light peak in the intact cat eye. J Physiol. 1982;331:653–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Marmorstein LY, et al. The light peak of the electroretinogram is dependent on voltage-gated calcium channels and antagonized by bestrophin (best-1). J Gen Physiol. 2006;127(5):577–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu J, et al. Voltage-dependent calcium channel CaV1.3 subunits regulate the light peak of the electroretinogram. J Neurophysiol. 2007;97(5):3731–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Constable PA, et al. ISCEV Standard for clinical electro-oculography (2017 update). Doc Ophthalmol. 2017;134(1):1–9.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Constable PA, et al. Erratum to: ISCEV Standard for clinical electro-oculography (2017 update). Doc Ophthalmol. 2017;134(2):155.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Constable PA, et al. Correction to: ISCEV Standard for clinical electro-oculography (2017 update). Doc Ophthalmol. 2018;136(2):155.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Schneck ME, Shupenko L, Adams AJ. The fast oscillation of the EOG in diabetes with and without mild retinopathy. Doc Ophthalmol. 2008;116(3):231–6.

    Article  PubMed  Google Scholar 

  13. Yu MZ, Wu LZ, Wu DZ. Model parameters of the smooth pursuit eye movement system with electrooculogram. Doc Ophthalmol. 1990;76(1):37–46.

    Article  CAS  PubMed  Google Scholar 

  14. Danchaivijitr C, Kennard C. Diplopia and eye movement disorders. J Neurol Neurosurg Psychiatry. 2004;75 Suppl 4:iv24–31.

    CAS  PubMed  Google Scholar 

  15. Rivaud-Pechoux S, et al. Longitudinal ocular motor study in corticobasal degeneration and progressive supranuclear palsy. Neurology. 2000;54(5):1029–32.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donnell Creel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Creel, D., Yu, M. (2019). Electrooculography. In: Yu, M., Creel, D., Iannaccone, A. (eds) Handbook of Clinical Electrophysiology of Vision. Springer, Cham. https://doi.org/10.1007/978-3-030-30417-1_3

Download citation

Publish with us

Policies and ethics