Skip to main content

Electroretinography

  • Chapter
  • First Online:
Book cover Handbook of Clinical Electrophysiology of Vision
  • 982 Accesses

Abstract

The electroretinogram (ERG) is the electrical response generated in the retina by photic stimulation. A flash of light or a stimulating pattern produces a biphasic waveform. The initial large negative a-wave originates in the receptor level of rods and cones. The following large positive component, the b-wave, originates in the mid-retina. Full-field electroretinograms (ERGs) are recorded to determine the global health of the retina such as in retinitis pigmentosa. A limitation of the full-field ERG is that it is not sensitive to small areas of dysfunction in the retina. Multifocal ERGs (mfERGs) display the responses in millimeter-by-millimeter mapping of the central 60 degrees of visual field. The status and progression of retinal diseases or drug toxicity can be measured and quantified with ERGs. Flash stimuli vary in their sensitivity to retinal dysfunction. For example, scotopic dim blue and red flash ERGs are most sensitive to systemic metabolic disorders and are usually the best stimuli to follow progression of disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holmgren F. Metod att objektivera effektenav ljusintryck pa retina. Upsala lakaref Forhandl. 1865;1:177–91.

    Google Scholar 

  2. Granit R. The components of the retinal action potential in mammals and their relation to the discharge in the optic nerve. J Physiol. 1933;77(3):207–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Murakami M, Kaneko A. Subcomponents of P3 in cold-blooded vertebrate retinae. Nature. 1966;210(5031):103–4.

    Article  CAS  PubMed  Google Scholar 

  4. Sillman AJ, Ito H, Tomita T. Studies on the mass receptor potential of the isolated frog retina. I. General properties of the response. Vision Res. 1969;9(12):1435–42.

    Article  CAS  PubMed  Google Scholar 

  5. Penn RD, Hagins WA. Signal transmission along retinal rods and the origin of the electroretinographic a-wave. Nature. 1969;223(5202):201–4.

    Article  CAS  PubMed  Google Scholar 

  6. Sillman AJ, Ito H, Tomita T. Studies on the mass receptor potential of the isolated frog retina. II. On the basis of the ionic mechanism. Vision Res. 1969;9(12):1443–51.

    Article  CAS  PubMed  Google Scholar 

  7. Miller RF, Dowling JE. Intracellular responses of the Muller (glial) cells of mudpuppy retina: their relation to b-wave of the electroretinogram. J Neurophysiol. 1970;33(3):323–41.

    Article  CAS  PubMed  Google Scholar 

  8. Taumer R, et al. Experiments concerning the human C-wave. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1976;198(2):139–53.

    Article  CAS  PubMed  Google Scholar 

  9. Yu M, Peachey NS. Use of direct current electroretinography for analysis of retinal pigment epithelium function in mouse models. Methods Mol Biol. 2018;1753:103–13.

    Article  CAS  PubMed  Google Scholar 

  10. Skoog KO, Nilsson SE. Changes in the c-wave of the electroretinogram and in the standing potential of the eye after small doses of toluene and styrene. Acta Ophthalmol. 1981;59(1):71–9.

    Article  CAS  Google Scholar 

  11. Wu L, Lurie M, Marmor MF. The C-wave of the rabbit electroretinogram during dark-adaptation and the steady-state. Acta Ophthalmol. 1981;59(4):603–8.

    Article  CAS  Google Scholar 

  12. Ueno S, et al. Contribution of retinal neurons to d-wave of primate photopic electroretinograms. Vision Res. 2006;46(5):658–64.

    Article  PubMed  Google Scholar 

  13. Naarendorp F, Williams GE. The d-wave of the rod electroretinogram of rat originates in the cone pathway. Vis Neurosci. 1999;16(1):91–105.

    Article  CAS  PubMed  Google Scholar 

  14. Wachtmeister L, Dowling JE. The oscillatory potentials of the mudpuppy retina. Invest Ophthalmol Vis Sci. 1978;17(12):1176–88.

    CAS  PubMed  Google Scholar 

  15. Gouras P, MacKay C. A new component in the a-wave of the human cone electroretinogram. Doc Ophthalmol. 2000;101(1):19–24.

    Article  CAS  PubMed  Google Scholar 

  16. Weleber RG. The effect of age on human cone and rod ganzfeld electroretinograms. Invest Ophthalmol Vis Sci. 1981;20(3):392–9.

    CAS  PubMed  Google Scholar 

  17. McCulloch DL, et al. ISCEV Standard for full-field clinical electroretinography (2015 update). Doc Ophthalmol. 2015;130(1):1–12.

    Article  PubMed  Google Scholar 

  18. Thompson DA, et al. ISCEV extended protocol for the dark-adapted red flash ERG. Doc Ophthalmol. 2018;136(3):191–7.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Holder GE, et al. ISCEV standard for clinical pattern electroretinography – 2007 update. Doc Ophthalmol. 2007;114(3):111–6.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bach M, et al. ISCEV standard for clinical pattern electroretinography (PERG): 2012 update. Doc Ophthalmol. 2013;126(1):1–7.

    Article  PubMed  Google Scholar 

  21. Sutter EE. Noninvasive testing methods: multifocal electrophysiology. In: Dartt DA, editor. Encyclopedia of the eye. Oxford: Academic Press; 2010.

    Google Scholar 

  22. Luu CD, et al. Multifocal electroretinogram in children on atropine treatment for myopia. Br J Ophthalmol. 2005;89(2):151–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Klemp K, et al. The multifocal ERG in diabetic patients without retinopathy during euglycemic clamping. Invest Ophthalmol Vis Sci. 2005;46(7):2620–6.

    Article  PubMed  Google Scholar 

  24. Hood DC, et al. Retinal origins of the primate multifocal ERG: implications for the human response. Invest Ophthalmol Vis Sci. 2002;43(5):1673–85.

    PubMed  Google Scholar 

  25. Hood DC, et al. ISCEV standard for clinical multifocal electroretinography (mfERG) (2011 edition). Doc Ophthalmol. 2012;124(1):1–13.

    Article  PubMed  Google Scholar 

  26. Marmor MF, et al. ISCEV Standard for full-field clinical electroretinography (2008 update). Doc Ophthalmol. 2009;118(1):69–77.

    Article  CAS  PubMed  Google Scholar 

  27. Pasek TA, Huber JM. Hospitalized infants who hurt: a sweet solution with oral sucrose. Crit Care Nurse. 2012;32(1):61–9.

    Article  PubMed  Google Scholar 

  28. Rufiange M, et al. The photopic ERG luminance-response function (photopic hill): method of analysis and clinical application. Vision Res. 2003;43(12):1405–12.

    Article  PubMed  Google Scholar 

  29. Rufiange M, et al. Cone-dominated ERG luminance-response function: the Photopic Hill revisited. Doc Ophthalmol. 2002;104(3):231–48.

    Article  PubMed  Google Scholar 

  30. Sieving PA, Murayama K, Naarendorp F. Push-pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave. Vis Neurosci. 1994;11(3):519–32.

    Article  CAS  PubMed  Google Scholar 

  31. Naka KI, Rushton WA. S-potentials from colour units in the retina of fish (Cyprinidae). J Physiol. 1966;185(3):536–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yu M, Peachey NS. Attenuation of oscillatory potentials in nob2 mice. Doc Ophthalmol. 2007;115(3):173–86.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donnell Creel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Creel, D., Yu, M. (2019). Electroretinography. In: Yu, M., Creel, D., Iannaccone, A. (eds) Handbook of Clinical Electrophysiology of Vision. Springer, Cham. https://doi.org/10.1007/978-3-030-30417-1_1

Download citation

Publish with us

Policies and ethics