Skip to main content

Structural Modeling of Nonlinear Localized Strain Waves in Generalized Continua

  • Chapter
  • First Online:
Higher Gradient Materials and Related Generalized Continua

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 120))

Abstract

The basic principles of structural modeling for the construction of mathematical models of microstructured media (generalized continua) are given. Here, microstructure means not the smallness of absolute values, but the smallness of some medium scale with respect to other scales, and the particles are considered to be non-deformable and homogeneous, without their own internal structure, presenting realistic materials. A nonlinear dynamically consistent model of a gradient-elastic medium has been elaborated by the method of structural modeling and using the continualization method involving nonlocality of coupling between the displacements of the lattice sites and the obtained continuum. The formation of spatially localized nonlinear strain waves in such media has been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altenbach H, Maugin GA, Erofeev VI (eds) (2011) Mechanics of Generalized Continua, Advanced Structured Materials, vol 7. Springer-Verlag, Berlin, Heidelberg

    Google Scholar 

  • Askes H, Metrikine A (2002) One-dimensional dynamically consistent gradient elasticity models derived from a discrete microstructure. Part 1: Generic formulation. European Journal of Mechanics A/Solids 21(4):573–588

    Article  Google Scholar 

  • Berglund K (1982) Structural models of micropolar media. In: Brulin O, Hsieh RKT (eds) Mechanics of Micropolar Media, World Scientific, Singapore, pp 35–86

    Chapter  Google Scholar 

  • Bobrovnitsky YI, Tomilina TM (2018) Sound absorption and metamaterials: A review. Acoustical Physics 64(5):519–526

    Article  Google Scholar 

  • Bogoliubov NN, Mitropolsky YA (1961) Asymptotic Methods in the Theory of Non-Linear Oscillations. Gordon and Breach, New York

    Google Scholar 

  • Born M, Huang K (1954) Dynamical Theory of Crystal Lattices. Int. Series of Monographs on Physics, Clarendon Press, Oxford

    Google Scholar 

  • Broberg KB (1997) The cell model of materials. Computational Mechanics 19:447–452

    Article  Google Scholar 

  • Chang C, Ma L (1994) A micromechanical-based micropolar theory for deformation of granular solids. Intern J Solids and Structures 28(1):67–87

    Article  Google Scholar 

  • Christoffersen J, Mehrabadi MM, Nemat-Nasser SA (1981) A micromechanical description of granular material behavior. Trans ASME J Appl Mech 48(2):339–344

    Article  Google Scholar 

  • Cleland AN (2003) Foundations of Nanomechanics. Advanced Texts in Physics, Springer-Verlag, Berlin

    Book  Google Scholar 

  • Cosserat E, Cosserat F (1909) Theorié des Corps Déformables. Librairie Scientifique A. Hermann et Fils, Paris

    Google Scholar 

  • de Borst R, van der Giessen E (eds) (1998) Material Instabilities in Solids. J. Wiley and Sons, Chichester-New York-Wienheim-Brisbane-Singapore-Toronto

    Google Scholar 

  • Erofeev VI, Mal’khanov AO (2017) Localized strain waves in a nonlinearly elastic conducting medium interacting with a magnetic field. Mechanics of Solids 52(2):224–231

    Article  Google Scholar 

  • Erofeev VI, Pavlov IS (2018) Rotational waves in microstructured materials. In: dell’Isola F, Eremeyev A, Porubov A (eds) Advances in Mechanics of Microstructured Media and Structures, Springer, Cham, Advanced Structured Materials, vol 87, pp 103–124

    Google Scholar 

  • Erofeev VI, Kazhaev VV, Semerikova NP (2002) Volny v sterzhnyakh. Dispersiya. Dissipatsiya (Nelineitost’ (Waves in Pivots. Dispersion. Dissipation. Nonlinearity, in Russ.). Fizmatlit, Moscow

    Google Scholar 

  • Erofeyev VI (2003) Wave Processes in Solids with Microstructure. World Scientific Publishing, New Jersey-London-Singapore-Hong Kong-Bangalore-Taipei

    Google Scholar 

  • Fedorov VI (1968) Theory of Elastic Waves in Crystals. Plenum Press, New York

    Book  Google Scholar 

  • Ghoniem NM, Busso EP, Kioussis N, Huang H (2003) Multiscale modelling of nanomechanics and micromechanics: an overview. Phil Magazine 83(31–34):3475–3528

    Google Scholar 

  • Gulyaev YV, Lagar’kov AN, Nikitov SA (2008) Metamaterials: basic research and potential applications. Herald of the Russian Academy of Sciences 78(3):268–278

    Article  Google Scholar 

  • Kolken HMA, Zadpoor AA (2017) Auxetic mechanical metamaterials. RSC Advances 7(9):5111–5129

    Article  CAS  Google Scholar 

  • Krivtsov AM (2007) Deformirovanie i razrushenie tverdykh tels mikrostrukturoi (Deformation and Fracture of Solids with Microstructure, in Russ.). Fizmatlit Publishers, Moscow

    Google Scholar 

  • Kudryashov NA (2010) Methods of Nonlinear Mathematical Physics (in Russ.). Intellect, Dolgoprudny

    Google Scholar 

  • Li S, Wang G (2018) Introduction to Micromechanics and Nanomechanics, 2nd edn. World Scientific Co.

    Google Scholar 

  • Lippman H (1995) Cosserat plasticity and plastic spin. ASME Appl Mech Rev 48(11):753–762

    Google Scholar 

  • Love AEH (1920) A Treatise on the Mathematical Theory of Elasticity, 3rd edn. The University Press, Cambridge

    Google Scholar 

  • Maugin GA (1988) Continuum Mechanics of Electromagnetic Solids. Elsevier Science Publisher, Amsterdam

    Google Scholar 

  • Metrikine A, Askes H (2002) One-dimensional dynamically consistent gradient elasticity models derived from a discrete microstructure. Part 2: Static and dynamic response. European Journal of Mechanics A/Solids 21(4):589–596

    Google Scholar 

  • Nikolaevskiy VN (1996) Geomechanics and Fluidodynamics, Theory and Applications of Transport in Porous Media, vol 8. Springer, Dordrecht

    Google Scholar 

  • Ostoja-Starzewski M, Sheng Y, Alzebdeh K (1996) Spring network models in elasticity and fracture of composites and polycrystals. Computational Materials Science 7:82–93

    Article  Google Scholar 

  • Pavlov IS (2010) Acoustic identification of the anisotropic nanocrystalline medium with non-dense packing of particles. Acoustical Physics 56(6):924–934

    Article  CAS  Google Scholar 

  • Pavlov IS, Potapov AI (2008) Structural models in mechanics of nanocrystalline media. Doklady Physics 53(7):408–412

    Article  CAS  Google Scholar 

  • Pavlov IS, Potapov AI,, Maugin GA (2006) A 2D granular medium with rotating particles. Int J of Solids and Structures 43(20):6194–6207

    Article  Google Scholar 

  • Potapov AI, Pavlov IS, Maugin GA (1999) Nonlinear wave interactions in 1D crystals with complex lattice. Wave Motion 29(4):297–312

    Article  Google Scholar 

  • Potapov AI, Pavlov IS, Lisina SA (2009) Acoustic identification of nanocrystalline media. Journal of Sound and Vibration 322(3):564–580

    Article  Google Scholar 

  • Shining Z, Xiang Z (2018) Metamaterials: artificial materials beyond nature. National Science Review 5(2):131

    Article  Google Scholar 

  • Suiker ASJ, Metrikine A, de Borst R (2001) Comparison of wave propagation characteristics of the Cosserat continuum model and corresponding discrete lattice models. Int J of Solids and Structures 38:1563–1583

    Article  Google Scholar 

  • Vakhnenko A (1996) Diagnosis of the properties of a structurized medium by long nonlinear waves. Journal of Applied Mechanics and Technical Physics 37(5):643–649

    Article  Google Scholar 

  • Vardoulakis I, Sulem J (1995) Bifurcation Analysis in Geomechanics. Blackie Academic and Professional, London

    Google Scholar 

  • Vasiliev AA, Pavlov IS (2018) Structural and mathematical modeling of Cosserat lattices composed of particles of finite size and with complex connections. IOP Conference Series: Materials Science and Engineering 447:012,079

    Article  Google Scholar 

  • Voigt W (1887) Theoretische Studien über die Elasticitätsverhältnisse der Kristalle. Abn der Königl Ges Wiss Göttingen 34

    Google Scholar 

Download references

Acknowledgements

The research was carried out under the financial support of the Russian Foundation for Basic Research (projects NN 18-29-10073-mk and 19-08-00965-a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir I. Erofeev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Erofeev, V.I., Leontyeva, A.V., Malkhanov, A.O., Pavlov, I.S. (2019). Structural Modeling of Nonlinear Localized Strain Waves in Generalized Continua. In: Altenbach, H., Müller, W., Abali, B. (eds) Higher Gradient Materials and Related Generalized Continua. Advanced Structured Materials, vol 120. Springer, Cham. https://doi.org/10.1007/978-3-030-30406-5_4

Download citation

Publish with us

Policies and ethics