Skip to main content

Bioactive Metabolites from Marine Ascidians: Future Treatment for Autism Spectrum Disorder

  • Chapter
  • First Online:
Personalized Food Intervention and Therapy for Autism Spectrum Disorder Management

Abstract

Autism spectrum disorder (ASD) is a developmental disorder that influences communication and behavior. Numerous researches propose that genes can act together with manipulations from the environment to affect development in ways that lead to ASD. The broad range of issues facing people with ASD means that there is no single proper drug and treatment for ASD. Numerous shortcomings associated with the present conventional therapeutic strategies have forced researchers to venture into alternative natural sources for effective compounds. The marine environment has emerged as an alternate search environment due to its versatile conditions where organisms employ various biodefense mechanisms for their survival. Ascidians are an excellent source for unique bioactive compounds with nutritive and therapeutic content and it still holds credit for being an underused source from marine animals. Bioactive compounds isolated from ascidians have various commendable biomedical applications due to their unique chemical structures. The present chapter will focus on the potential of bioactive compounds derived from ascidians for the treatment of the neurologic disorder—ASD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Woolfenden, S., Sarkozy, V., Ridley, G., & Williams, K. (2012). A systematic review of the diagnostic stability of autism spectrum disorder. Research in Autism Spectrum Disorders, 6(1), 345–354.

    Article  Google Scholar 

  2. Worley, J. A., & Matson, J. L. (2012). Comparing symptoms of autism spectrum disorders using the current DSM-IV-TR diagnostic criteria and the proposed DSM-V diagnostic criteria. Research in Autism Spectrum Disorders, 6(2), 965–970.

    Article  Google Scholar 

  3. Frith, U. (2008). Autism: A very short introduction. New York: Oxford University Press.

    Book  Google Scholar 

  4. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Washington, DC: Author.

    Book  Google Scholar 

  5. Weitlauf, A. S., Gotham, K. O., Vehorn, A. C., & Warren, Z. E. (2014). Brief report: DSM-5 “levels of support:” A comment on discrepant conceptualizations of severity in ASD. Journal of Autism and Developmental Disorders, 44(2), 471–476.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kaat, A. J., Gadow, K. D., & Lecavalier, L. (2013). Psychiatric symptom impairment in children with autism spectrum disorders. Journal of Abnormal Child Psychology, 41(6), 959–969.

    Article  PubMed  Google Scholar 

  7. Elsabbagh, M., & Johnson, M. H. (2016). Autism and the social brain: The first-year puzzle. Biological Psychiatry, 80(2), 94–99.

    Article  PubMed  Google Scholar 

  8. Mattila, M. L., Kielinen, M., Linna, S. L., Jussila, K., Ebeling, H., Bloigu, R., et al. (2011). Autism spectrum disorders according to DSM-IV-TR and comparison with DSM-5 draft criteria: An epidemiological study. Journal of the American Academy of Child & Adolescent Psychiatry, 50(6), 583–592.

    Article  Google Scholar 

  9. Saemundsen, E., Magnússon, P., Georgsdóttir, I., Egilsson, E., & Rafnsson, V. (2013). Prevalence of autism spectrum disorders in an Icelandic birth cohort. BMJ Open, 3(6), e002748.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Center for Disease Control. (2014). Autism and Developmental Disabilities Monitoring Network Surveillance Year 2010 Principal Investigators. Prevalence of autism spectrum disorder among children aged 8 years—Autism and developmental disabilities monitoring network, 11 sites, United States, 2010. Morbidity and Mortality Weekly Report: Surveillance Summaries 2014, 63(2), 1–21.

    Google Scholar 

  11. Reichow, B., Barton, E. E., Boyd, B. A., & Hume, K. (2012). Early intensive behavioral intervention (EIBI) for young children with autism spectrum disorders (ASD). Cochrane Database of Systematic Reviews, 17, 10.

    Google Scholar 

  12. Myers, S. M., & Johnson, C. P. (2007). The Council on Children with Disabilities. Management of children with autism spectrum disorders. Pediatrics, 120(5), 1162–1182.

    Article  PubMed  Google Scholar 

  13. Doyle, C. A., & McDougle, C. J. (2012). Pharmacologic treatments for the behavioral symptoms associated with autism spectrum disorders across the lifespan. Dialogues in Clinical Neuroscience, 14, 263–279.

    PubMed  PubMed Central  Google Scholar 

  14. McCracken, J. T., McGough, J., Shah, B., Cronin, P., Hong, D., Aman, M. G., et al. (2002). Risperidone in children with autism and serious behavioral problems. New England Journal of Medicine, 347(5), 314–321.

    Article  CAS  Google Scholar 

  15. Marcus, R. N., Owen, R., Kamen, L., Manos, G., McQuade, R. D., Carson, W. H., et al. (2009). A placebo-controlled, fixed-dose study of aripiprazole in children and adolescents with irritability associated with autistic disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 48(11), 1110–1119.

    Article  Google Scholar 

  16. Montaser, R., & Luesch, H. (2011). Marine natural products: A new wave of drugs? Future Medicinal Chemistry, 3(12), 1475–1489.

    Article  CAS  PubMed  Google Scholar 

  17. Lei, J., & Zhou, J. (2002). A marine natural product database. Journal of Chemical Information and Computer Sciences, 42(3), 742–748.

    Article  CAS  PubMed  Google Scholar 

  18. Nastrucci, C., Cesario, A., & Russo, P. (2012). Anticancer drug discovery from the marine environment. Recent Patents on Anti-Cancer Drug Discovery, 7(2), 218–232.

    Article  CAS  PubMed  Google Scholar 

  19. Faulkner, D. J. (2000). Marine natural products. Natural Product Reports, 19, 1–48.

    Article  Google Scholar 

  20. Shenkar, N., & Swalla, B. J. (2011). Global diversity of Ascidiacea. PLoS One, 6(6), e20657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ali, H. A., & Tamilselvi, M. (2016). Ascidians in coastal water: A comprehensive inventory of Ascidian Fauna from the Indian Coast. Cham, Switzerland: Springer.

    Google Scholar 

  22. Arumugam, V., Venkatesan, M., Ramachandran, S., & Sundaresan, U. (2018). Bioactive peptides from marine ascidians and future drug development – A review. International Journal of Peptide Research and Therapeutics, 24(1), 13–18.

    Article  CAS  Google Scholar 

  23. Chen, L., Hu, J. S., Xu, J. L., Shao, C. L., & Wang, G. Y. (2018). Biological and chemical diversity of Ascidian-associated microorganisms. Marine Drugs, 16(10), 362.

    Article  CAS  PubMed Central  Google Scholar 

  24. Menna, M., Fattorusso, E., & Imperatore, C. (2011). Alkaloids from marine ascidians. Molecules, 16(10), 8694–8732.

    Article  CAS  PubMed Central  Google Scholar 

  25. Faulkner, D. J. (2002). Marine natural products: Metabolites of marine invertebrates. Natural Product Reports, 19, 1–48.

    CAS  PubMed  Google Scholar 

  26. Seleghim, M. H., de Lira, S. P., Campana, P. T., Berlinck, R. G., & Custódio, M. R. (2007). Localization of granulatimide alkaloids in the tissues of the ascidian Didemnum granulatum. Marine Biology, 150(5), 967–975.

    Article  CAS  Google Scholar 

  27. Mayer, A. M., Glaser, K. B., Cuevas, C., Jacobs, R. S., Kem, W., Little, R. D., et al. (2010). The odyssey of marine pharmaceuticals: A current pipeline perspective. Trends in Pharmacological Sciences, 31(6), 255–265.

    Article  CAS  PubMed  Google Scholar 

  28. Blunt, J. W., Copp, B. R., Hu, W. P., Munro, M. H., Northcote, P. T., & Prinsep, M. R. (2008). Marine natural products. Natural Product Reports, 25(1), 35–94.

    Article  CAS  PubMed  Google Scholar 

  29. Menna, M. (2009). Antitumor potential of natural products from Mediterranean ascidians. Phytochemistry Reviews, 8(2), 461–472.

    Article  CAS  Google Scholar 

  30. Uddin, J., Ueda, K., Siwu, E. R., Kita, M., & Uemura, D. (2006). Cytotoxic labdane alkaloids from an ascidian Lissoclinum sp.: Isolation, structure elucidation, and structure–activity relationship. Bioorganic & Medicinal Chemistry, 14(20), 6954–6961.

    Article  CAS  Google Scholar 

  31. Valentin, B. B., Vinod, V., & Beulah, M. C. (2011). Biopotential of secondary metabolites isolated from marine sponge Dendrilla nigra. Asian Pacific Journal of Tropical Disease, 1(4), 299–303.

    Article  Google Scholar 

  32. Madhumitha, G., & Fowsiya, J. A. (2015). Handbook on: Semi micro technique for extraction of alkaloids. Indore, India: International Science Congress Association.

    Google Scholar 

  33. Marcelo, A., Geronimo, R. M., Vicente, C. J., Callanta, R. B., Bennett, R. M., Ysrael, M. C., et al. (2018). TLC screening profile of secondary metabolites and biological activities of Salisapiliatartarea S1YP1 isolated from Philippine Mangroves. Journal of Oleo Science, 67(12), 1585–1595.

    Article  CAS  PubMed  Google Scholar 

  34. Pooja, S., Aditi, T., Naine, S. J., & Devi, C. S. (2017). Bioactive compounds from marine Streptomyces sp. VITPSA as therapeutics. Frontiers in Biology, 12(4), 280–289.

    Article  CAS  Google Scholar 

  35. Kadam, N. S., Naik, A. A., Doshi, P. J., & Nikam, T. D. (2019). High-performance thin-layer chromatography method for simultaneous determination of antipsychotic and medicinally important five β-carboline alkaloids. Journal of Chromatographic Science, 57(4), 312–322.

    Article  CAS  PubMed  Google Scholar 

  36. Bontemps, N., Bry, D., López-Legentil, S., Simon-Levert, A., Long, C., & Banaigs, B. (2010). Structures and antimicrobial activities of pyridoacridine alkaloids isolated from different chromotypes of the ascidian Cystodytes dellechiajei. Journal of Natural Products, 73(6), 1044–1048.

    Article  CAS  PubMed  Google Scholar 

  37. Van Wagoner, R. M., Jompa, J., Tahir, A., & Ireland, C. M. (1999). Trypargine alkaloids from a previously undescribed Eudistoma sp. ascidian. Journal of Natural Products, 62(5), 794–797.

    Article  PubMed  Google Scholar 

  38. Pimenta, A. T., Jimenez, P. C., Costa-Lotufo, L. V., Braz-Filhoc, R., & Lima, M. A. (2014). New unusual alkaloids from the ascidian Eudistoma vannamei. Natural Product Communications, 9(12), 1713–1715.

    Article  PubMed  Google Scholar 

  39. Makarieva, T. N., Dmitrenok, A. S., Dmitrenok, P. S., Grebnev, B. B., & Stonik, V. A. (2001). Pibocin B, the first N-O-methylindole marine alkaloid, a metabolite from the far-eastern ascidian Eudistoma species. Journal of Natural Products, 64(12), 1559–1561.

    Article  CAS  PubMed  Google Scholar 

  40. Gul, W., & Hamann, M. T. (2005). Indole alkaloid marine natural products: An established source of cancer drug leads with considerable promise for the control of parasitic, neurological and other diseases. Life Sciences, 78(5), 442–453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Singh, K. S., & Majik, M. S. (2016). Bioactive alkaloids from marine sponges. InMarine sponges: Chemicobiological and biomedical applications (pp. 257–286). New Delhi, India: Springer.

    Book  Google Scholar 

  42. Joullié, M. M., Leonard, M. S., Portonovo, P., Liang, B., Ding, X., & La Clair, J. J. (2003). Chemical defense in ascidians of the Didemnidae family. Bioconjugate Chemistry, 14(1), 30–37.

    Article  PubMed  CAS  Google Scholar 

  43. Tianero, M. D., Kwan, J. C., Wyche, T. P., Presson, A. P., Koch, M., Barrows, L. R., et al. (2015). Species specificity of symbiosis and secondary metabolism in ascidians. The ISME Journal, 9(3), 615.

    Article  PubMed  Google Scholar 

  44. Lindquist, N., Hay, M. E., & Fenical, W. (1992). Defense of ascidians and their conspicuous larvae: Adult vs. larval chemical defenses. Ecological Monographs, 62(4), 547–568.

    Article  Google Scholar 

  45. Pisut, D. P., & Pawlik, J. R. (2002). Anti-predatory chemical defenses of ascidians: Secondary metabolites or inorganic acids? Journal of Experimental Marine Biology and Ecology, 270(2), 203–214.

    Article  CAS  Google Scholar 

  46. Nakamura, A., Ashino, T., & Yamamoto, M. (1991). Structure determination of a very unusual peroxide from solitary ascidians, Phallusia mammillata, ascidia ahodori, styelapricata and halocynthia roretzi. Tetrahedron Letters, 32(34), 4355–4358.

    Article  CAS  Google Scholar 

  47. Dias, D. A., Urban, S., & Roessner, U. (2012). A historical overview of natural products in drug discovery. Metabolites, 2(2), 303–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tohme, R., Darwiche, N., & Gali-Muhtasib, H. (2011). A journey under the sea: The quest for marine anti-cancer alkaloids. Molecules, 16(11), 9665–9696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zubía, E., Ortega, M. J., & Salvá, J. (2005). Natural products chemistry in marine ascidians of the genus Aplidium. Mini-Reviews in Organic Chemistry, 2(4), 389–399.

    Article  Google Scholar 

  50. Schieber, M., & Chandel, N. S. (2014). ROS function in redox signaling and oxidative stress. Current Biology, 24(10), R453–R462.

    Article  CAS  PubMed  Google Scholar 

  51. Bebianno, M. J., Company, R., Serafi, A., Camus, L., Cosson, P., & Fiala-Medoni, A. (2005). Antioxidant systems and lipid peroxidation in Bathymodiolus azoricus from mid-Atlantic ridge hydrothermal vent fields. Ecotoxicology and Environmental Safety, 75, 354–373.

    CAS  Google Scholar 

  52. Farooqi, A., Fayyaz, S., Hou, M. F., Li, K. T., Tang, J. Y., & Chang, H. W. (2014). Reactive oxygen species and autophagy modulation in non-marine drugs and marine drugs. Marine Drugs, 12(11), 5408–5424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cotelle, N., Moreau, S., Bernier, J. L., Catteau, J. P., & Henichart, J. P. (1991). Antioxidant properties of natural hydroquinones from the marine colonial tunicate Aplidium californicum. Free Radical Biology and Medicine, 11(1), 63–68.

    Article  CAS  PubMed  Google Scholar 

  54. Ananthan, G., & Iyappan, K. (2014). Immunomodulatory activity of ethanol extract of the ascidian Didemnum Albidum. World Journal of Pharmacy and Pharmaceutical Sciences, 3(12), 745–755.

    Google Scholar 

  55. Priya, D. S. (2015). Antioxidant activity of the simple ascidian Phallusia nigra of Thoothukudi Coast. International Journal of Pharmaceutical Chemistry, 05(12), 410–412.

    CAS  Google Scholar 

  56. Viride, E. (2017). In vitro antioxidant studies on colonial ascidians eudistoma viride and Didemnum psammathodes. IJPSR, 8(7), 3170–3179.

    Google Scholar 

  57. Wyche, T. P., Standiford, M., Hou, Y., Braun, D., Johnson, D. A., Johnson, J. A., et al. (2013). Activation of the nuclear factor E2-related factor 2 pathway by novel natural products halomadurones A–D and a synthetic analogue. Marine Drugs, 11(12), 5089–5099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kim, S. K., Perera, U. M., Rajapakse, N., & Kim, S. (2016). Seafood processing by-products. New York: Springer.

    Google Scholar 

  59. Benslimane, A. F., Pouchus, Y. F., Verbist, J. F., Petit, J. Y., Khettab, E. N., Welin, L., et al. (1992). Marine bioactive compounds: Stereospecific anti-inflammatory activity of natural and synthetic Cordiachromene A. The Journal of Clinical Pharmacology, 32(1), 37–40.

    Article  CAS  PubMed  Google Scholar 

  60. McNamara, C. E., Larsen, L., Perry, N. B., Harper, J. L., Berridge, M. V., Chia, E. W., et al. (2005). Anti-inflammatory Sesquiterpene-quinones from the New Zealand Sponge Dysidea cf. c ristagalli. Journal of Natural Products, 68(9), 1431–1433.

    Article  CAS  PubMed  Google Scholar 

  61. Pearce, A. N., Chia, E. W., Berridge, M. V., Clark, G. R., Harper, J. L., Larsen, L., et al. (2007). Anti-inflammatory thiazine alkaloids isolated from the New Zealand ascidian Aplidium sp.: Inhibitors of the neutrophil respiratory burst in a model of gouty arthritis. Journal of Natural Products, 70(6), 936–940.

    Article  CAS  PubMed  Google Scholar 

  62. Patil, A. D., Freyer, A. J., Killmer, L., Zuber, G., Carte, B., Jurewicz, A. J., et al. (1997). Lissoclin disulfoxide, a novel dimeric alkaloid from the ascidian Lissoclinum sp.: Inhibitor of interleukin-8 receptors. Natural Product Letters, 10(3), 225–229.

    Article  CAS  Google Scholar 

  63. Appleton, D. R., Page, M. J., Lambert, G., Berridge, M. V., & Copp, B. R. (2002). Kottamides A−D: Novel bioactive Imidazolone-containing alkaloids from the New Zealand Ascidian Pycnoclavella kottae. The Journal of Organic Chemistry, 67(15), 5402–5404.

    Article  CAS  PubMed  Google Scholar 

  64. Aiello, A., Borrelli, F., Capasso, R., Fattorusso, E., Luciano, P., & Menna, M. (2003). Conicamin, a novel histamine antagonist from the mediterranean tunicate Aplidium conicum. Bioorganic & Medicinal Chemistry Letters, 13(24), 4481–4483.

    Article  CAS  Google Scholar 

  65. Pearce, A. N., Chia, E. W., Berridge, M. V., Maas, E. W., Page, M. J., Webb, V. L., et al. (2007). E/Z-rubrolide O, an anti-inflammatory halogenated furanone from the New Zealand ascidian Synoicum n. sp. Journal of Natural Products, 70(1), 111–113.

    Article  CAS  PubMed  Google Scholar 

  66. Pearce, A. N., Chia, E. W., Berridge, M. V., Maas, E. W., Page, M. J., Harper, J. L., et al. (2008). Orthidines A–E, tubastrine, 3, 4-dimethoxyphenethyl-β-guanidine, and 1, 14-sperminedihomovanillamide: Potential anti-inflammatory alkaloids isolated from the New Zealand ascidian Aplidium orthium that act as inhibitors of neutrophil respiratory burst. Tetrahedron, 64(24), 5748–5755.

    Article  CAS  Google Scholar 

  67. Pearce, A. N., Appleton, D. R., Babcock, R. C., & Copp, B. R. (2003). Distomadines A and B, novel 6-hydroxyquinoline alkaloids from the New Zealand ascidian, Pseudodistoma aureum. Tetrahedron Letters, 44(20), 3897–3899.

    Article  CAS  Google Scholar 

  68. Gompel, M., Leost, M., Joffe, E. B., Puricelli, L., Franco, L. H., Palermo, J., et al. (2004). Meridianins, a new family of protein kinase inhibitors isolated from the ascidian Aplidium meridianum. Bioorganic & Medicinal Chemistry Letters, 14(7), 1703–1707.

    Article  CAS  Google Scholar 

  69. Xu, C. X., Jin, H., Chung, Y. S., Shin, J. Y., Woo, M. A., Lee, K. H., et al. (2008). Chondroitin sulfate extracted from the Styela clava tunic suppresses TNF-α-induced expression of inflammatory factors, VCAM-1 and iNOS by blocking Akt/NF-κB signal in JB6 cells. Cancer Letters, 264(1), 93–100.

    Article  CAS  PubMed  Google Scholar 

  70. Belofsky, G. N., Anguera, M., Jensen, P. R., Fenical, W., & Köck, M. (2000). Oxepinamides A-C and Fumiquinazolines H-I: Bioactive metabolites from a marine isolate of a fungus of the genus Acremonium. Chemistry–A European Journal, 6(8), 1355–1360.

    Article  CAS  Google Scholar 

  71. Appleton, D. R., Chuen, C. S., Berridge, M. V., Webb, V. L., & Copp, B. R. (2009). Rossinones A and B, biologically active meroterpenoids from the Antarctic ascidian, Aplidium species. The Journal of Organic Chemistry, 74(23), 9195–9198.

    Article  CAS  PubMed  Google Scholar 

  72. Chan, S. T., Pearce, A. N., Januario, A. H., Page, M. J., Kaiser, M., McLaughlin, R. J., et al. (2011). Anti-inflammatory and antimalarial meroterpenoids from the New Zealand ascidian Aplidium scabellum. The Journal of Organic Chemistry, 76(21), 9151–9156.

    Article  CAS  PubMed  Google Scholar 

  73. Rajesh, R. P., & Murugan, A. (2013). Central nervous system depressant, anti-inflammatory analgesic and antipyretic activity of the ascidian Eudistoma virde. Pharmacologia, 65, 69.

    Google Scholar 

  74. Ansari, T., Ravichandran, V., & Suba, V. (2012). Anti-inflammatory property of the methanol extracts of the Ascidian Eudistoma viride in rat models. Journal of Pharmacy Research, 5(11), 5131–5133.

    Google Scholar 

  75. Bertanha, C., Januário, A., Alvarenga, T., Pimenta, L., Silva, M., Cunha, W., et al. (2014). Quinone and hydroquinone metabolites from the ascidians of the genus Aplidium. Marine Drugs, 12(6), 3608–3633.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Rajasekaran, A., Murugan, A., Anand, P. R., Vijayakumar, P., Kumaresan, T., & Ramasamy, M. S. (2003). CNS depressant activity of the methanolic extract of the ascidian Distaplia nathensis. International Journal of Chemical Science, 1, 13–16.

    Google Scholar 

  77. Meenakshi, V. K., Delighta Mano Joyce, M. I., Paripooranaselvi, M., & Gomathy, S. (2013). CNS depressant activity of the simple ascidian Microcosmus exasperatus Heller, 1878. International Journal of Current Microbiology and Applied Sciences, 2(10), 16–25.

    Google Scholar 

  78. Palanisamy, S. K., Rajendran, N. M., & Marino, A. (2017). Natural products diversity of marine ascidians (tunicates; ascidiacea) and successful drugs in clinical development. Natural Products and Bioprospecting, 7(1), 1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yin, S., Cullinane, C., Carroll, A. R., Quinn, R. J., & Davis, R. A. (2010). Botryllamides K and L, new tyrosine derivatives from the Australian ascidian Aplidium altarium. Tetrahedron Letters, 51(26), 3403–3405.

    Article  CAS  Google Scholar 

  80. Watters, D. (2018). Ascidian toxins with potential for drug development. Marine Drugs, 16(5), 162.

    Article  PubMed Central  CAS  Google Scholar 

  81. Nanri, K., Ogawa, J., & Nishikawa, T. (1992). Tunic of a pyurid ascidian Microcosmus hartmeyeri Oka is eaten locally in Japan. Nanki Seibutu, 34(2), 135.

    Google Scholar 

  82. Davis, A. R. (1995). Over-exploitation of Pyura chilensis (Ascidiacea) in southern Chile: The urgent need to establish marine reserves. Revista Chilena de Historia Natural, 68(1), 7–1.

    Google Scholar 

  83. Karthikeyan, M. M., Ananthan, G., & Balasubramanian, T. (2011). Biochemical components of a solitary ascidian Microcosmus exasperatus Heller, 1878 (Ascidiacea: Pyuridae). Journal of the Marine Biological Association of India, 53(1), 139–141.

    Google Scholar 

  84. Ananthan, G., Karthikeyan, M. M., Selva, P. A., & Raghunathan, C. (2012). Studies on the seasonal variations in the proximate composition of ascidians from the Palk Bay, southeast coast of India. Asian Pacific Journal of Tropical Biomedicine, 2(10), 793–797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kumaran, N. S., & Bragadeeswaran, S. (2014). Nutritional composition of the colonial Ascidian Eudistoma viride and Didemnum psammathodes. Biosciences, Biotechnology Research Asia, 1, 331–338.

    Article  Google Scholar 

  86. Lee, K. H., Hong, B. I., Choi, B. D., Kang, S. J., Ruck, J. H., & Jung, B. C. (1998). Utilization of pigments and tunic components of ascidian as an improved feed aids for aquaculture 1. Effective extraction methods of crude polysaccharides in ascidian (Halocpthia roretzi) tunic. Korean Journal of Fisheries and Aquatic Sciences, 31(3), 423–428.

    CAS  Google Scholar 

  87. Ahn, S. H., Jung, S. H., Kang, S. J., Jeong, T. S., & Choi, B. D. (2003). Extraction of glycosaminoglycans from Styela clava tunic. Korean Journal of Biotechnology and Bioengineering, 18(3), 180–185.

    Google Scholar 

Download references

Acknowledgments

The chapter was supported by the Science and Engineering Research Board, India under grant SB/YS/LS-374/2013, CSIR—SRF, UGC-FIST and UGC-SAP, New Delhi.

Competing Interests

Authors disclose no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Venkatesan, M. et al. (2020). Bioactive Metabolites from Marine Ascidians: Future Treatment for Autism Spectrum Disorder. In: Essa, M., Qoronfleh, M. (eds) Personalized Food Intervention and Therapy for Autism Spectrum Disorder Management. Advances in Neurobiology, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-030-30402-7_25

Download citation

Publish with us

Policies and ethics