Skip to main content

Abstract

Autism is a developmental disorder that affects communication and behavior. Although autism can be diagnosed at any age, it is said to be a “developmental disorder” because symptoms generally appear in the first 2 years of life. The primary cause of autism is still not clear and therapy is currently restricted to controlling behavioral abnormalities. However, emerging studies have shown a link between mitochondrial dysfunction and autism. Dietary supplements that promote mitochondrial biogenesis and inhibit the production of oxidative stress have been used to treat autism patients. Dietary adjustments in treating autism is a novel approach to suppress autistic symptoms. Supplementation with antioxidants has been found to not only inhibit cognitive decline but also improve behavioral symptoms in autism. Dietary supplements fortified with vitamins should only be given under the supervision of a physician. A wide range of nutraceuticals are under clinical trials to understand whether they physiologically target mitochondrial pathways and improve the quality of life in autism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sanctuary, M. R., Kain, J. N., Angkustsiri, K., & German, J. B. (2018). Dietary considerations in autism spectrum disorders: The potential role of protein digestion and microbial putrefaction in the gut-brain axis. Frontiers in Nutrition, 5, 40. https://doi.org/10.3389/fnut.2018.00040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. McElhanon, B. O., McCracken, C., Karpen, S., & Sharp, W. G. (2014). Gastrointestinal symptoms in autism spectrum disorder: A meta-analysis. Pediatrics, 133, 872–883. https://doi.org/10.1542/peds.2013-3995

    Article  PubMed  Google Scholar 

  3. Kawicka, A., & Regulska-Ilow, B. (2013). How nutritional status, diet and dietary supplements can affect autism. A review. Roczniki Państwowego Zakładu Higieny, 64, 1–12.

    CAS  PubMed  Google Scholar 

  4. Rollett, A. (1909). Zur Kenntnis der Linolensäure und des Leinöls. Zeitschrift für physiologische Chemie, 62(5–6), 422–431.

    Article  Google Scholar 

  5. Cheng, Y. S., Tseng, P. T., Chen, Y. W., Stubbs, B., Yang, W. C., Chen, T. Y., et al. (2017). Supplementation of omega 3 fatty acids may improve hyperactivity, lethargy, and stereotypy in children with autism spectrum disorders: A meta-analysis of randomized controlled trials. Neuropsychiatric Disease and Treatment, 13, 2531–2543. https://doi.org/10.2147/NDT.S147305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hagmeyer, S., Sauer, A. K., & Grabrucker, A. M. (2018). Prospects of zinc supplementation in autism spectrum disorders and shankopathies such as Phelan McDermid syndrome. Frontiers in Synaptic Neuroscience, 10, 11. https://doi.org/10.3389/fnsyn.2018.00011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Parikh, S., Saneto, R., Falk, M. J., Anselm, I., Cohen, B. H., Haas, R., et al. (2009). A modern approach to the treatment of mitochondrial disease. Current Treatment Options in Neurology, 11, 414–430.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gunes, S., Ekinci, O., & Celik, T. (2017). Iron deficiency parameters in autism spectrum disorder: Clinical correlates and associated factors. Italian Journal of Pediatrics, 43, 86. https://doi.org/10.1186/s13052-017-0407-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mousain-Bosc, M., Roche, M., Polge, A., Pradal-Prat, D., Rapin, J., & Bali, J. P. (2006). Improvement of neurobehavioral disorders in children supplemented with magnesium-vitamin B6. II. Pervasive developmental disorder-autism. Magnesium Research, 19, 53–62.

    CAS  PubMed  Google Scholar 

  10. Griffiths, K. K., & Levy, R. J. (2017). Evidence of mitochondrial dysfunction in autism: Biochemical links, genetic-based associations, and non-energy-related mechanisms. Oxidative Medicine and Cellular Longevity, 2017, 4314025. https://doi.org/10.1155/2017/4314025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Coleman, M., & Blass, J. P. (1985). Autism and lactic acidosis. Journal of Autism and Developmental Disorders, 15, 1–8.

    Article  CAS  PubMed  Google Scholar 

  12. Lombard, J. (1998). Autism: A mitochondrial disorder? Medical Hypotheses, 50, 497–500.

    Article  CAS  PubMed  Google Scholar 

  13. Bernier, F. P., Boneh, A., Dennett, X., Chow, C. W., Cleary, M. A., & Thorburn, D. R. (2002). Diagnostic criteria for respiratory chain disorders in adults and children. Neurology, 59, 1406–1411. https://doi.org/10.1212/01.wnl.0000033795.17156.00

    Article  CAS  PubMed  Google Scholar 

  14. Correia, C., Coutinho, A. M., Diogo, L., Grazina, M., Marques, C., Miguel, T., et al. (2006). Brief report: High frequency of biochemical markers for mitochondrial dysfunction in autism: No association with the mitochondrial aspartate/glutamate carrier SLC25A12 gene. Journal of Autism and Developmental Disorders, 36, 1137–1140. https://doi.org/10.1007/s10803-006-0138-6

    Article  PubMed  Google Scholar 

  15. Oliveira, G., Diogo, L., Grazina, M., Garcia, P., Ataíde, A., Marques, C., et al. (2005). Mitochondrial dysfunction in autism spectrum disorders: A population-based study. Developmental Medicine and Child Neurology, 47, 185–189.

    Article  CAS  PubMed  Google Scholar 

  16. Minshew, N. J., Goldstein, G., Dombrowski, S. M., Panchalingam, K., & Pettegrew, J. W. (1993). A preliminary 31P MRS study of autism: Evidence for undersynthesis and increased degradation of brain membranes. Biological Psychiatry, 33, 762–773. https://doi.org/10.1016/0006-3223(93)90017-8

    Article  CAS  PubMed  Google Scholar 

  17. Richard E. F, & Daniel A. R. (2011). Mitochondrial dysfunction can connect the diverse medical symptoms associated with autism spectrum disorders. Pediatric Research, 69, 5. https://doi.org/10.1203/PDR.0b013e318212f16b

  18. Chez, M. G., Dowling, T., Patel, P. B., Khanna, P., & Kominsky, M. (2007). Elevation of tumor necrosis factor-alpha in cerebrospinal fluid of autistic children. Pediatric Neurology, 36, 361–365. https://doi.org/10.1016/j.pediatrneurol.2007.01.012

    Article  PubMed  Google Scholar 

  19. Malik, M., Sheikh, A. M., Wen, G., Spivack, W., Brown, W. T., & Li, X. (2011). Expression of inflammatory cytokines, Bcl 2 and cathepsin D are altered in lymphoblasts of autistic subjects. Immunobiology, 216, 80–85. https://doi.org/10.1016/j.imbio.2010.03.001

    Article  CAS  PubMed  Google Scholar 

  20. Kurup, R. K., & Kurup, P. A. (2003). A hypothalamic digoxin-mediated model for autism. The International Journal of Neuroscience, 113, 1537–1559. https://doi.org/10.1080/00207450390231482

    Article  PubMed  Google Scholar 

  21. Siddiqui, M. F., Elwell, C., & Johnson, M. H. (2016). Mitochondrial dysfunction in autism spectrum disorders. Autism-Open Access, 6, 1000190. https://doi.org/10.4172/2165-7890.1000190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chauhan, A., Audhya, T., & Chauhan, V. (2012). Brain region-specific glutathione redox imbalance in autism. Neurochemical Research, 37, 1681–1689. https://doi.org/10.1007/s11064-012-0775-4

    Article  CAS  PubMed  Google Scholar 

  23. Rose, S., Melnyk, S., Pavliv, O., Bai, S., Nick, T. G., Frye, R. E., et al. (2012). Evidence of oxidative damage and inflammation associated with low glutathione redox status in the autism brain. Translational Psychiatry, 2, e134. https://doi.org/10.1038/tp.2012.61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Frye, R. E., & Rossignol, D. A. (2014). Treatments for biomedical abnormalities associated with autism spectrum disorder. Frontiers in Pediatrics, 2, 66. https://doi.org/10.3389/fped.2014.00066

    Article  PubMed  PubMed Central  Google Scholar 

  25. James, S. J., Melnyk, S., Fuchs, G., Reid, T., Jernigan, S., Pavliv, O., et al. (2009). Efficacy of methylcobalamin and folinic acid treatment on glutathione redox status in children with autism. The American Journal of Clinical Nutrition, 89, 425–430. https://doi.org/10.3945/ajcn.2008.26615

    Article  CAS  PubMed  Google Scholar 

  26. Bremer, J. (1983). Carnitine–metabolism and functions. Physiological Review, 63, 1420–1479.

    Article  CAS  Google Scholar 

  27. Cannan, R. K., & Shore, A. (1928). The creatine-creatinine equilibrium. The apparent dissociation constants of creatine and creatinine. Biochemical Journal, 22(4), 920–929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Crane, F. L. (2007). Discovery of ubiquinone (coenzyme Q) and an overview of function. Mitochondrion, 7(Suppl), S2–S7.

    Article  CAS  PubMed  Google Scholar 

  29. Apel, F. (2015, July). Biographie von Ernst Schulze. http://www.arginium.de/wp-content/uploads/2015/09/Biographie-Ernst-Schulze-Juli-2015.pdf.

  30. Tein, I. (2003). Carnitine transport: Pathophysiology and metabolism of known molecular defects. Journal of Inherited Metabolic Disease, 26, 147–169.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chidambaram, S.B. et al. (2020). Protein Nutrition in Autism. In: Essa, M., Qoronfleh, M. (eds) Personalized Food Intervention and Therapy for Autism Spectrum Disorder Management. Advances in Neurobiology, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-030-30402-7_20

Download citation

Publish with us

Policies and ethics