Skip to main content

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 24))

Abstract

Autism spectrum disorder (ASD) is an inherited neurodevelopmental disorder of social communication and restricted, repetitive behaviors. Much remains unknown about their mechanisms of action and physiological effects. In recent years, there has been a growing interest in nutritional diets, which can be used as a form of therapeutic intervention for ASD with a recent increase in the research being carried out in this field. Selective nutrition therapy for ASD and brain function shows improvement in behavioral changes and reduction in malnutrition seemingly associated with the allergies or food intolerances to gluten. Therefore, a gluten-free diet has yielded positive outcomes giving hope in developing therapy for ASD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Volkmar, F. R., Reichow, B., Westphal, A., & Mandell, D. S. (2014). Autism and the autism spectrum: Diagnostic concepts. In F. R. Volkmar (Ed.), Handbook of autism and pervasive developmental disorders (4th ed.). Hoboken, NJ: Wiley. https://doi.org/10.1002/9781118911389.hautc01

    Chapter  Google Scholar 

  2. Tsatsanis, K. D., Volkmar, F. R., Paul, R., Klin, A., & Cohen, D. (2014). Neuropsychological characteristics in autism and related conditions. In F. R. Volkmar, R. Paul, A. Klin, & D. Cohen (Eds.), Handbook of autism and pervasive developmental disorders: Diagnosis, development, neurobiology, and behavior (Vol. 1, 3rd ed., pp. 365–381). Hoboken, NJ: Wiley. https://doi.org/10.1002/9780470939345.ch13

    Chapter  Google Scholar 

  3. McCarthy, J., Hemmings, C., Kravariti, E., Dworzynski, K., Holt, G., Bouras, N., et al. (2010). Challenging behavior and co-morbid psychopathology in adults with intellectual disability and autism spectrum disorders. Research in Developmental Disabilities, 31(2), 362–366.

    Article  PubMed  Google Scholar 

  4. Lecavalier, L. (2006). Behavioral and emotional problems in young people with pervasive developmental disorders: Relative prevalence, effects of subject characteristics, and empirical classification. Journal of Autism and Developmental Disorders, 36(8), 1101–1114.

    Article  PubMed  Google Scholar 

  5. Bourgeron, T. (2015). From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nature Reviews. Neuroscience, 16, 551–563.

    Article  CAS  PubMed  Google Scholar 

  6. Ronemus, M., Iossifov, I., Levy, D., & Wigler, M. (2014). The role of de novo mutations in the genetics of autism spectrum disorders. Nature Reviews. Genetics, 15, 133–141.

    Article  CAS  PubMed  Google Scholar 

  7. Arora, N. K., MKC, N., Gulati, S., Deshmukh, V., Mohapatra, A., Mishra, D., et al. (2018). Neurodevelopmental disorders in children aged 2-9 years: Population-based burden estimates across five regions in India. PLoS Medicine, 15, e1002615.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Almeida, M. I., Reis, R. M., & Calin, G. A. (2011). MicroRNA history: Discovery, recent applications, and next frontiers. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 717, 1–8.

    Article  CAS  PubMed  Google Scholar 

  9. Pickles, A., Bolton, P., Macdonald, H., Bailey, A., Le Couteur, A., Sim, C. H., et al. (1995). Latent-class analysis of recurrence risks for complex phenotypes with selection and measurement error: A twin and family history study of autism. American Journal of Human Genetics, 57(3), 717.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Gaugler, T., Klei, L., Sanders, S. J., Bodea, C. A., Goldberg, A. P., Lee, A. B., et al. (2014). Most genetic risk for autism resides with common variation. Nature Genetics, 46(8), 881–885. https://doi.org/10.1038/ng.3039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Basu, S. N., Kollu, R., & Banerjee-Basu, S. (2009). AutDB: A gene reference resource for autism research. Nucleic Acids Research, 37, D832–D836. https://doi.org/10.1093/nar/gkn835

    Article  CAS  PubMed  Google Scholar 

  12. Penn, H. E. (2006). Neurobiological correlates of autism: A review of recent research. Child Neuropsychology, 12(1), 5779. https://doi.org/10.1080/09297040500253546

    Article  Google Scholar 

  13. Hsiao, E. Y. (2013). Immune dysregulation in autism spectrum disorder. Neurobiology of autism. International Review of Neurobiology., 113, 269–302. https://doi.org/10.1016/B978-0-12-418700-9.00009-5

    Article  CAS  PubMed  Google Scholar 

  14. Levy, S. E., Mandell, D. S., & Schultz, R. T. (2009). Autism. Lancet, 374(9701), 1627–1638. https://doi.org/10.1016/S0140-6736(09)61376-3

    Article  PubMed  PubMed Central  Google Scholar 

  15. Löscher, W. (2002). Basic pharmacology of valproate: A review after 35 years of clinical use for the treatment of epilepsy. CNS Drugs, 16, 669–694.

    Article  PubMed  Google Scholar 

  16. Meador, K., Reynolds, M. W., Crean, S., Fahrbach, K., & Probst, C. (2008). Pregnancy outcomes in women with epilepsy: A systematic review and meta-analysis of published pregnancy registries and cohorts. Epilepsy Research, 81, 1–13.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Williams, G., King, J., Cunningham, M., Stephan, M., Kerr, B., & Hersh, J. H. (2001). Fetal valproate syndrome and autism: Additional evidence of an association. Developmental Medicine and Child Neurology, 43, 202–206.

    Article  CAS  PubMed  Google Scholar 

  18. Christensen, J., Gronborg, T. K., Sorensen, M. J., Schendel, D., Parner, E. T., Pedersen, L. H., et al. (2013). Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA, 309, 1696–1703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Miller, M. T. (1991). Thalidomide embryopathy: A model for the study of congenital incomitant horizontal strabismus. Transactions of the American Ophthalmological Society, 81, 623–674.

    Google Scholar 

  20. Ito, T., Ando, H., Suzuki, T., Ogura, T., Hotta, K., Imamura, Y., et al. (2010). Identification of a primary target of thalidomide teratogenicity. Science, 327, 1345–1350.

    Article  CAS  PubMed  Google Scholar 

  21. Narita, N., Kato, M., Tazoe, M., Miyazaki, K., Narita, M., & Okado, N. (2002). Increased monoamine concentration in the brain and blood of fetal thalidomide- and valproic acid-exposed rat: Putative animal models for autism. Pediatric Research, 52, 576–579.

    CAS  PubMed  Google Scholar 

  22. Gonzalez, C. H., Marques-Dias, M. J., Kim, C. A., Sugayama, S. M., Da Paz, J. A., Huson, S. M., et al. (1998). Congenital abnormalities in Brazilian children associated with misoprostol misuse in first trimester of pregnancy. Lancet, 351, 1624–1627.

    Article  CAS  PubMed  Google Scholar 

  23. MacFabe, D. F., Cain, D. P., Rodriguez-Capote, K., Franklin, A. E., Hoffman, J. E., Boon, F., et al. (2007). Neurobiological effects of intraventricular propionic acid in rats possible role of short chain fatty acids on the pathogenesis and characteristics of autism spectrum disorders. Behavioural Brain Research, 176, 149–169.

    Article  CAS  PubMed  Google Scholar 

  24. Reith, R. M., McKenna, J., Wu, H., Hashmi, S. S., Cho, S. H., Dash, P. K., et al. (2013). Loss of Tsc2 in Purkinje cells is associated with autistic-like behavior in a mouse model of tuberous sclerosis complex. Neurobiology of Disease, 51, 93–103.

    Article  CAS  PubMed  Google Scholar 

  25. Moy, S. S., Riddick, N. V., Nikolova, V. D., Teng, B. L., Agster, K. L., Nonneman, R. J., et al. (2014). Repetitive behavior profile and supersensitivity to amphetamine in the C58/J mouse model of autism. Behavioural Brain Research, 259, 200–214.

    Article  CAS  PubMed  Google Scholar 

  26. Valicenti-McDermott, M., McVicar, K., Rapin, I., Wershil, B. K., Cohen, H., & Shinnar, S. (2006). Frequency of gastrointestinal symptoms in children with autistic spectrum disorders and association with family history of autoimmune disease. Journal of Developmental and Behavioral Pediatrics, 27, S128–S136.

    Article  PubMed  Google Scholar 

  27. Catassi, C., & Fasano, A. (2008). Celiac disease. Current Opinion in Gastroenterology, 24, 687–691.

    Article  PubMed  Google Scholar 

  28. Yang, A., Chen, Y., Scherl, E., Neugut, A. I., Bhagat, G., & Green, P. H. R. (2005). Inflammatory bowel disease in patients with celiac disease. Inflammatory Bowel Diseases, 11, 528–523.

    Article  PubMed  Google Scholar 

  29. Camarca, A., Anderson, R. P., Mamone, G., Fierro, O., Facchiano, A., Costantini, S., et al. (2009). Intestinal T cell response to gluten peptides are largely heterogeneous: Implications for a peptide-based therapy in celiac disease. Journal of Immunology, 182, 4158–4166.

    Article  CAS  Google Scholar 

  30. Vojdani, J.B. Pangborn, E. Vojdani, E.L. (2003) Cooper Infections, toxic chemicals and dietary peptides binding to lymphocyte receptors and tissue enzymes are major instigators of autoimmunity in autism. Int. J. Immunopathol. Pharmacol, 16, 189–199.

    Google Scholar 

  31. Elder, J. H., Shankar, M., Shuster, J., Theriaque, D., Burns, S., & Sherrill, L. (2006). The gluten-free, casein-free diet in autism: Results of a preliminary double blind clinical trial. Journal of Autism and Developmental Disorders, 36, 413–421.

    Article  PubMed  Google Scholar 

  32. Groom Jr., A. D. (2011) LusterCXCR3 in T cell function. Exp. Cell Res, 317, 620–631.

    Google Scholar 

  33. Hosomi, S., Oshitani, N., Kamata, N., Sogawa, M., Okazaki, H., Tanigawa, T., et al. (2011). Increased numbers of immature plasma cells in peripheral blood specifically overexpress chemokine receptor CXCR3 and CXCR4 in patients with ulcerative colitis. Clinical & Experimental Immunology, 163, 215–224.

    Article  CAS  Google Scholar 

  34. McCarthy, D. M., & Coleman, M. (1979). Response of intestinal mucosa to gluten challenge in autistic subjects. The Lancet, ii, 877–878.

    Article  Google Scholar 

  35. Arnold, G. L., Hyman, S. L., Mooney, R., & Kirby, R. S. (2003). Plasma amino acids profiles in children with autism: Potential risk for nutritional deficiencies. Journal of Autism and Developmental Disorders, 33(4), 449–454.

    Article  PubMed  Google Scholar 

  36. Knivsberg, A. M., Reichelt, K. L., Hoien, T., & Nodland, M. (2002). A randomized, controlled study of dietary intervention in autistic syndromes. Nutritional Neuroscience, 5(4), 251–261.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sumathi, T., Manivasagam, T., Thenmozhi, A.J. (2020). The Role of Gluten in Autism. In: Essa, M., Qoronfleh, M. (eds) Personalized Food Intervention and Therapy for Autism Spectrum Disorder Management. Advances in Neurobiology, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-030-30402-7_14

Download citation

Publish with us

Policies and ethics