Skip to main content

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 24))

Abstract

The grain group is small, hard, dry seeds, known to be more durable than other staple foods. They have been a part of the human diet for tens of thousands of years. The two foremost types of commercial grain crops are cereals and legumes or pulses, discussed in Chapter 13 “Seeds.” A low intake of whole grains is actually the leading dietary risk factor for death and disease in the USA. Few healthy grains are discussed in this chapter that can help prevent health problems like heart diseases, diabetes, and cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kristensen, M., Toubro, S., Jensen, M. G., Ross, A. B., Riboldi, G., Petronio, M., et al. (2012). Whole grain compared with refined wheat decreases the percentage of body fat following a 12-week, energy-restricted dietary intervention in postmenopausal women. The Journal of Nutrition, 142(4), 710–716.

    Article  CAS  PubMed  Google Scholar 

  2. Aller, E. E., Abete, I., Astrup, A., Martinez, J. A., & van Baak, M. A. (2011). Starches, sugars and obesity. Nutrients, 3(3), 341–369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Slavin, J. (2003). Why whole grains are protective: Biological mechanisms. The Proceedings of the Nutrition Society, 62(1), 129–134.

    Article  CAS  PubMed  Google Scholar 

  4. Likes, R., Madl, R. L., Zeisel, S. H., & Craig, S. A. (2007). The betaine and choline content of a whole wheat flour compared to other mill streams. Journal of Cereal Science, 46(1), 93–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Craig, S. A. (2004). Betaine in human nutrition. The American Journal of Clinical Nutrition, 80(3), 539–549.

    Article  CAS  PubMed  Google Scholar 

  6. Pena-Rosas, J. P., Rickard, S., & Cho, S. (1999). Wheat bran and breast cancer: Revisiting the estrogen hypothesis. Archivos Latinoamericanos de Nutrición, 49(4), 309–317.

    CAS  PubMed  Google Scholar 

  7. Qu, H., Madl, R. L., Takemoto, D. J., Baybutt, R. C., & Wang, W. (2005). Lignans are involved in the antitumor activity of wheat bran in colon cancer SW480 cells. The Journal of Nutrition, 135(3), 598–602.

    Article  CAS  PubMed  Google Scholar 

  8. Peterson, J., Dwyer, J., Adlercreutz, H., Scalbert, A., Jacques, P., & McCullough, M. L. (2010). Dietary lignans: Physiology and potential for cardiovascular disease risk reduction. Nutrition Reviews, 68(10), 571–603.

    Article  PubMed  Google Scholar 

  9. Makiuchi, T., Sobue, T., Kitamura, T., Ishihara, J., Sawada, N., Iwasaki, M., et al. (2017). The relationship between vegetable/fruit consumption and gallbladder/bile duct cancer: A population-based cohort study in Japan. International Journal of Cancer, 140(5), 1009–1019.

    Article  CAS  PubMed  Google Scholar 

  10. Behall, K. M., Scholfield, D. J., & Hallfrisch, J. (2006). Whole-grain diets reduce blood pressure in mildly hypercholesterolemic men and women. Journal of the American Dietetic Association, 106(9), 1445–1449.

    Article  PubMed  Google Scholar 

  11. Athanasopoulos, D., Karagiannis, G., & Tsolaki, M. (2016). Recent findings in Alzheimer disease and nutrition focusing on epigenetics. Advances in Nutrition, 7(5), 917–927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Abdel-Aal el-S. M., Akhtar, H., Zaheer, K., & Ali, R. (2013). Dietary sources of lutein and zeaxanthin carotenoids and their role in eye health. Nutrients, 5(4), 1169–1185.

    Google Scholar 

  13. Di Sabatino, A., & Corazza, G. R. (2009). Coeliac disease. Lancet, 373(9673), 1480–1493.

    Article  PubMed  Google Scholar 

  14. Hadjivassiliou, M., Grünewald, R., Sharrack, B., Sanders, D., Lobo, A., Williamson, C., et al. (2003). Gluten ataxia in perspective: Epidemiology, genetic susceptibility and clinical characteristics. Brain, 126(Pt 3), 685–691.

    Article  PubMed  Google Scholar 

  15. Hadjivassiliou, M., Davies-Jones, G. A., Sanders, D. S., & Grünewald, R. A. (2003). Dietary treatment of gluten ataxia. Journal of Neurology, Neurosurgery, and Psychiatry, 74(9), 1221–1224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Coury, D. (2014). Retrieved from https://www.autismspeaks.org/node/112986

  17. Buie, T. (2013). The relationship of autism and gluten. Clinical Therapeutics, 35(5), 578–583.

    Article  CAS  PubMed  Google Scholar 

  18. Adams, J. B., Audhya, T., Geis, E., Gehn, E., Fimbres, V., Pollard, E. L., et al. (2018). Comprehensive nutritional and dietary intervention for autism spectrum disorder—A randomized, controlled 12-month trial. Nutrients, 10(3), E369.

    Article  CAS  PubMed  Google Scholar 

  19. Gogou, M., & Kolios, G. (2018). Are therapeutic diets an emerging additional choice in autism spectrum disorder management? World Journal of Pediatrics, 14(3), 215–223.

    Article  CAS  PubMed  Google Scholar 

  20. Lopez, H. W., Leenhardt, F., Coudray, C., & Remesy, C. (2002). Minerals and phytic acid interactions: Is it a real problem for human nutrition? International Journal of Food Science & Technology, 37(7), 727–739.

    Article  CAS  Google Scholar 

  21. Fagagnini, S., Heinrich, H., Rossel, J. B., Biedermann, L., Frei, P., Zeitz, J., et al. (2017). Risk factors for gallstones and kidney stones in a cohort of patients with inflammatory bowel diseases. PLoS One, 12(10), e0185193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Davy, B. M., Davy, K. P., Ho, R. C., Beske, S. D., Davrath, L. R., & Melby, C. L. (2002). High-fiber oat cereal compared with wheat cereal consumption favorably alters LDL-cholesterol subclass and particle numbers in middle-aged and older men. The American Journal of Clinical Nutrition, 76(2), 351–358.

    Article  CAS  PubMed  Google Scholar 

  23. Meydani, M. (2009). Potential health benefits of avenanthramides of oats. Nutrition Reviews, 67(12), 731–735.

    Article  PubMed  Google Scholar 

  24. Pereira, M. A., Jacobs, D. R. Jr., Pins, J. J., Raatz, S. K., Gross, M. D., Slavin, J. L., et al. (2002). Effect of whole grains on insulin sensitivity in overweight hyperinsulinemic adults. The American Journal of Clinical Nutrition, 75(5), 848–855.

    Google Scholar 

  25. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). (2010). Scientific opinion on the substantiation of a health claim related to oat beta glucan and lowering blood cholesterol and reduced risk of (coronary) heart disease pursuant to Article 14 of Regulation (EC) No 1924/2006. EFSA Journal, 8(12), 1885.

    Google Scholar 

  26. Rebello, C. J., O’Neil, C. E., & Greenway, F. L. (2016). Dietary fiber and satiety: The effects of oats on satiety. Nutrition Reviews, 74(2), 131–147.

    Article  PubMed  Google Scholar 

  27. Maki, K. C., Galant, R., Samuel, P., Tesser, J., Witchger, M. S., Ribaya-Mercado, J. D., et al. (2007). Effects of consuming foods containing oat beta-glucan on blood pressure, carbohydrate metabolism and biomarkers of oxidative stress in men and women with elevated blood pressure. European Journal of Clinical Nutrition, 61(6), 786–795.

    Article  CAS  PubMed  Google Scholar 

  28. El Khoury, D., Cuda, C., Luhovyy, B. L., & Anderson, G. H. (2012). Beta glucan: Health benefits in obesity and metabolic syndrome. Journal of Nutrition and Metabolism, 2012, 851362.

    PubMed  Google Scholar 

  29. Rondanelli, M., Opizzi, A., & Monteferrario, F. (2009). The biological activity of beta-glucans. Minerva Medica, 100(3), 237–245.

    CAS  PubMed  Google Scholar 

  30. Aschner, M., & Dorman, D. C. (2006). Manganese: Pharmacokinetics and molecular mechanisms of brain uptake. Toxicological Reviews, 25(3), 147–154.

    Article  CAS  PubMed  Google Scholar 

  31. Allen, K. G., & Klevay, L. M. (1994). Copper: An antioxidant nutrient for cardiovascular health. Current Opinion in Lipidology, 5(1), 22–28.

    Article  CAS  PubMed  Google Scholar 

  32. Rayman, M. P. (2012). Selenium and human health. Lancet, 379(9822), 1256–1268.

    Article  CAS  PubMed  Google Scholar 

  33. Reynertson, K. A., Garay, M., Nebus, J., Chon, S., Kaur, S., Mahmood, K., et al. (2015). Anti-inflammatory activities of colloidal oatmeal (Avena sativa) contribute to the effectiveness of oats in treatment of itch associated with dry, irritated skin. Journal of Drugs in Dermatology, 14(1), 43–48.

    PubMed  Google Scholar 

  34. Smulders, M. J. M., van de Wiel, C. C. M., van den Broeck, H. C., van der Meer, I. M., Israel-Hoevelaken, T. P. M., Timmer, R. D., et al. (2018). Oats in healthy gluten-free and regular diets: A perspective. Food Research International, 110, 3–10.

    Article  CAS  PubMed  Google Scholar 

  35. Talati, R., Baker, W. L., Pabilonia, M. S., White, C. M., & Coleman, C. I. (2009). The effects of barley-derived soluble fiber on serum lipids. Annals of Family Medicine, 7(2), 157–163.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Li, J., Kaneko, T., Qin, L. Q., Wang, J., & Wang, Y. (2003). Effects of barley intake on glucose tolerance, lipid metabolism, and bowel function in women. Nutrition, 19(11–12), 926–929.

    Article  CAS  PubMed  Google Scholar 

  37. Smith, K. N., Queenan, K. M., Thomas, W., Fulcher, R. G., & Slavin, J. L. (2008). Physiological effects of concentrated barley beta-glucan in mildly hypercholesterolemic adults. Journal of the American College of Nutrition, 27(3), 434–440.

    Article  CAS  PubMed  Google Scholar 

  38. Lee, K. P., Kim, C., Lee, D. W., & Apel, K. (2003). TIGRINA d, required for regulating the biosynthesis of tetrapyrroles in barley, is an ortholog of the FLU gene of Arabidopsis thaliana. FEBS Letters, 553(1–2), 119–124.

    Article  CAS  PubMed  Google Scholar 

  39. Ullah, Z., Ullah, M., Hussain, S., Kaul, H., & Lone, K. P. (2017). Determination of serum trace elements (Zn, Cu, and Fe) in Pakistani patients with rheumatoid arthritis. Biological Trace Element Research, 175(1), 10–16.

    Article  CAS  PubMed  Google Scholar 

  40. Hunter III., J. P. (2014). Health benefits: From foods and spices (p. 557). Washington, DC: John P. Hunter III.

    Google Scholar 

  41. Schott, M., de Jel, M. M., Engelmann, J. C., Renner, P., Geissler, E. K., Bosserhoff, A. K., & Kuphal, S. (2018). Selenium-binding protein 1 is down-regulated in malignant melanoma. Oncotarget, 9(12), 10445–10456.

    Google Scholar 

  42. Voss, G. T., Oliveira, R. L., de Souza, J. F., Duarte, L. F. B., Fajardo, A. R., Alves, D., et al. (2018). Therapeutic and technological potential of 7-chloro-4-phenylselanyl quinoline for the treatment of atopic dermatitis-like skin lesions in mice. Materials Science & Engineering. C, Materials for Biological Applications, 84, 90–98.

    Article  CAS  Google Scholar 

  43. Arbiser, J. L., Bonner, M. Y., Ward, N., Elsey, J., & Rao, S. (2018). Selenium unmasks protective iron armor: A possible defense against cutaneous inflammation and cancer. Biochimica et Biophysica Acta - General Subjects. pii: S0304-4165(18)30150-8.

    Google Scholar 

  44. Lu, H., & Liu, G. T. (1992). Anti-oxidant activity of dibenzocyclooctene lignans isolated from Schisandraceae. Planta Medica, 58(4), 311–313.

    Article  CAS  PubMed  Google Scholar 

  45. Spilioti, E., Holmbom, B., Papavassiliou, A. G., & Moutsatsou, P. (2014). Lignans 7-hydroxymatairesinol and 7-hydroxymatairesinol 2 exhibit anti-inflammatory activity in human aortic endothelial cells. Molecular Nutrition & Food Research, 58(4), 749–759.

    Article  CAS  Google Scholar 

  46. Calado, A., Neves, P. M., Santos, T., & Ravasco, P. (2018). The effect of flaxseed in breast cancer: A literature review. Frontiers in Nutrition, 5, 4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Solovyev, N. D., Fedoros, E. I., Drobyshev, E. J., Ivanenko, N. B., Pigarev, S. E., Tyndyk, M. L., et al. (2017). Anticancer activity and tissue distribution of platinum (II) complex with lignin-derived polymer of benzene-poly-carboxylic acids. Journal of Trace Elements in Medicine and Biology, 43, 72–79.

    Article  CAS  PubMed  Google Scholar 

  48. Arts, C. J., Govers, C. A., van den Berg, H., Wolters, M. G., van Leeuwen, P., & Thijssen, J. H. (1991). In vitro binding of estrogens by dietary fiber and the in vivo apparent digestibility tested in pigs. The Journal of Steroid Biochemistry and Molecular Biology, 38(5), 621–628.

    Article  CAS  PubMed  Google Scholar 

  49. Zeisel, S. H., & da Costa, K. A. (2009). Choline: An essential nutrient for public health. Nutrition Reviews, 67(11), 615–623.

    Article  PubMed  Google Scholar 

  50. Moreno, H. C., de Brugada, I., Carias, D., & Gallo, M. (2013). Long-lasting effects of prenatal dietary choline availability on object recognition memory ability in adult rats. Nutritional Neuroscience, 16(6), 269–274.

    Article  CAS  PubMed  Google Scholar 

  51. Grandner, M. A., Jackson, N., Gerstner, J. R., & Knutson, K. L. (2013). Dietary nutrients associated with short and long sleep duration. Data from a nationally representative sample. Appetite, 64, 71–80.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kyriakopoulou, K., Kefali, E., Piperigkou, Z., Bassiony, H., & Karamanos, N. K. (2018). Advances in targeting epidermal growth factor receptor signaling pathway in mammary cancer. Cellular Signalling, 51, 99–109.

    Article  CAS  PubMed  Google Scholar 

  53. Nishimuta, M., Kodama, N., Yoshitake, Y., Shimada, M., & Serizawa, N. (2018). Dietary salt (sodium chloride) requirement and adverse effects of salt restriction in humans. Journal of Nutritional Science and Vitaminology (Tokyo), 64(2), 83–89.

    Article  CAS  Google Scholar 

  54. Schutten, J. C., Joosten, M. M., de Borst, M. H., & Bakker, S. J. (2018). Magnesium and blood pressure: A physiology-based approach. Advances in Chronic Kidney Disease, 25(3), 244–250.

    Article  PubMed  Google Scholar 

  55. Vidal, C., & Gonzalez-Quintela, A. (1995). Food-induced and occupational asthma due to barley flour. Annals of Allergy, Asthma & Immunology, 75(2), 121–124.

    CAS  Google Scholar 

  56. Slavin, J. (2004). Whole grains and human health. Nutrition Research Reviews, 17(1), 99–110.

    Article  PubMed  Google Scholar 

  57. Hongisto, S. M., Paajanen, L., Saxelin, M., & Korpela, R. (2006). A combination of fibre-rich rye bread and yoghurt containing lactobacillus GG improves bowel function in women with self-reported constipation. European Journal of Clinical Nutrition, 60(3), 319–324.

    Article  CAS  PubMed  Google Scholar 

  58. Schwesinger, W. H., Kurtin, W. E., Page, C. P., Stewart, R. M., & Johnson, R. (1999). Soluble dietary fiber protects against cholesterol gallstone formation. American Journal of Surgery, 177(4), 307–310.

    Article  CAS  PubMed  Google Scholar 

  59. Nygren, C., Hallmans, G., & Lithner, F. (1984). Effects of high-bran bread on blood glucose control in insulin-dependent diabetic patients. Diabète & Métabolisme, 10(1), 39–43.

    CAS  Google Scholar 

  60. Van Hung, P. (2016). Phenolic compounds of cereals and their antioxidant capacity. Critical Reviews in Food Science and Nutrition, 56(1), 25–35.

    Article  CAS  PubMed  Google Scholar 

  61. Andreasen, M. F., Landbo, A. K., Christensen, L. P., Hansen, A., & Meyer, A. S. (2001). Antioxidant effects of phenolic rye (Secale cereale L.) extracts, monomeric hydroxycinnamates, and ferulic acid dehydrodimers on human low-density lipoproteins. Journal of Agricultural and Food Chemistry, 49(8), 4090–4096.

    Article  CAS  PubMed  Google Scholar 

  62. Sandberg, J. C., Björck, I. M. E., & Nilsson, A. C. J. N. J. (2017). Effects of whole grain rye, with and without resistant starch type 2 supplementation, on glucose tolerance, gut hormones, inflammation and appetite regulation in an 11–14.5 hour perspective; a randomized controlled study in healthy subjects. Nutrition Journal, 16(1), 25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Adlercreutz, H. (2010). Can rye intake decrease risk of human breast cancer? Food & Nutrition Research, 54. https://doi.org/10.3402/fnr.v54i0.5231

  64. Adom, K. K., & Liu, R. H. (2002). Antioxidant activity of grains. Journal of Agricultural and Food Chemistry, 50(21), 6182–6187.

    Article  CAS  PubMed  Google Scholar 

  65. Tabak, C., Wijga, A. H., de Meer, G., Janssen, N. A., Brunekreef, B., & Smit, H. A. (2006). Diet and asthma in Dutch school children (ISAAC-2). Thorax, 61(12), 1048–1053.

    Article  CAS  PubMed  Google Scholar 

  66. Zeltner, D., Glomb, M. A., & Mäde, D. (2009). Real-time PCR systems for the detection of the gluten-containing cereals wheat, spelt, kamut, rye, barley and oat. European Food Research and Technology, 228, 321–330.

    Article  CAS  Google Scholar 

  67. Gujral, N., Suh, J. W., & Sunwoo, H. H. (2015). Effect of anti-gliadin IgY antibody on epithelial intestinal integrity and inflammatory response induced by gliadin. BMC Immunology, 16, 41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Stenman, S. M., Lindfors, K., Venäläinen, J. I., Hautala, A., Männistö, P. T., Garcia-Horsman, J. A., et al. (2010). Degradation of coeliac disease-inducing rye secalin by germinating cereal enzymes: Diminishing toxic effects in intestinal epithelial cells. Clinical and Experimental Immunology, 161(2), 242–249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang, T., Pan, D., Zhou, Z., You, Y., Jiang, C., Zhao, X., et al. (2016). Dectin-3 deficiency promotes colitis development due to impaired antifungal innate immune responses in the gut. PLoS Pathogens, 12(6), e1005662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gorudko, I. V., Buko, I. V., Cherenkevich, S. N., Polonetsky, L. Z., & Timoshenko, A. V. (2008). Lectin-induced aggregates of blood cells from patients with acute coronary syndromes. Archives of Medical Research, 39(7), 674–681.

    Article  CAS  PubMed  Google Scholar 

  71. Fasano, A. (2011). Zonulin and its regulation of intestinal barrier function: The biological door to inflammation, autoimmunity, and cancer. Physiological Reviews, 91(1), 151–175.

    Article  CAS  PubMed  Google Scholar 

  72. Nowak, V., Du, J., & Charrondiere, U. (2015). Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chemistry, 193, 47–54.

    Article  CAS  PubMed  Google Scholar 

  73. Maradini-Filho, A. M. (2017). Quinoa: Nutritional aspects. Journal of Nutraceuticals and Food Science, 2(1), 3–7.

    Google Scholar 

  74. Stewart, L. K., Soileau, J. L., Ribnicky, D., Wang, Z. Q., Raskin, I., Poulev, A., et al. (2008). Quercetin transiently increases energy expenditure but persistently decreases circulating markers of inflammation in C57BL/6J mice fed a high-fat diet. Metabolism, 57(7 Suppl 1), S39–S46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Murakami, A., Ashida, H., & Terao, J. (2008). Multitargeted cancer prevention by quercetin. Cancer Letters, 269(2), 315–325.

    Article  CAS  PubMed  Google Scholar 

  76. Hou, Y., Aboukhatwa, M. A., Lei, D. L., Manaye, K., Khan, I., & Luo, Y. (2010). Anti-depressant natural flavonols modulate BDNF and beta amyloid in neurons and hippocampus of double TgAD mice. Neuropharmacology, 58(6), 911–920.

    Article  CAS  PubMed  Google Scholar 

  77. Park, J. H., Lee, Y. J., Kim, Y. H., & Yoon, K. S. (2017). Antioxidant and antimicrobial activities of quinoa (Chenopodium quinoa Willd.) seeds cultivated in Korea. Preventive Nutrition and Food Science, 22(3), 195–202.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Trackman, P. C. (2018). Functional importance of lysyl oxidase family propeptide regions. Journal of Cell Communication and Signaling, 12(1), 45–53.

    Article  PubMed  Google Scholar 

  79. Reguera, M., Conesa, C. M., Gil-Gómez, A., Haros, C. M., Pérez-Casas, M. Á., Briones-Labarca, V., et al. (2018). The impact of different agroecological conditions on the nutritional composition of quinoa seeds. PeerJ, 6, e4442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Alvarez-Jubete, L., Arendt, E. K., & Gallagher, E. (2009). Nutritive value and chemical composition of pseudocereals as gluten-free ingredients. International Journal of Food Sciences and Nutrition, 60(Suppl 4), 240–257.

    Article  CAS  PubMed  Google Scholar 

  81. Grube, B., Chong, P. W., Lau, K. Z., & Orzechowski, H. D. (2013). A natural fiber complex reduces body weight in the overweight and obese: A double-blind, randomized, placebo-controlled study. Obesity (Silver Spring), 21(1), 58–64.

    Article  CAS  Google Scholar 

  82. Burton-Freeman, B. (2000). Dietary fiber and energy regulation. The Journal of Nutrition, 130(2S Suppl), 272s–275s.

    Article  CAS  PubMed  Google Scholar 

  83. Ranilla, L. G., Apostolidis, E., Genovese, M. I., Lajolo, F. M., & Shetty, K. (2009). Evaluation of indigenous grains from the Peruvian Andean region for antidiabetes and antihypertension potential using in vitro methods. Journal of Medicinal Food, 12(4), 704–713.

    Article  CAS  PubMed  Google Scholar 

  84. Weickert, M. O., & Pfeiffer, A. F. (2008). Metabolic effects of dietary fiber consumption and prevention of diabetes. The Journal of Nutrition, 138(3), 439–442.

    Article  CAS  PubMed  Google Scholar 

  85. Jenkins, D. J., Wolever, T. M., Rao, A. V., Hegele, R. A., Mitchell, S. J., Ransom, T. P., et al. (1993). Effect on blood lipids of very high intakes of fiber in diets low in saturated fat and cholesterol. The New England Journal of Medicine, 329(1), 21–26.

    Article  CAS  PubMed  Google Scholar 

  86. Elsawy, A. A., Elshal, A. M., El-Nahas, A. R., Elbaset, M. A., Farag, H., & Shokeir, A. A. (2019). Can we predict the outcome of oral dissolution therapy for radiolucent renal calculi? A prospective study. The Journal of Urology, 201(2), 350–357.

    Article  PubMed  Google Scholar 

  87. Trinchieri, A., Esposito, N., & Castelnuovo, C. (2009). Dissolution of radiolucent renal stones by oral alkalinization with potassium citrate/potassium bicarbonate. Archivio Italiano di Urologia, Andrologia, 81(3), 188–191.

    PubMed  Google Scholar 

  88. Sachdeva, S., Khan, Z., Ansari, M. A., Khalique, N., & Anees, A. (2011). Lifestyle and gallstone disease: Scope for primary prevention. Indian Journal of Community Medicine, 36(4), 263–267.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Ashoori, M., & Saedisomeolia, A. (2014). Riboflavin (vitamin B2) and oxidative stress: A review. British Journal of Nutrition, 111(11), 1985–1991.

    Article  CAS  PubMed  Google Scholar 

  90. Li, L., & Yang, X. (2018). The essential element manganese, oxidative stress, and metabolic diseases: Links and interactions. Journal of Oxidative Medicine and Cellular Longevity, 2018, 11.

    Google Scholar 

  91. Jancurová, M., Minarovičová, L., & Dandár, A. (2009). Quinoa—A review. Czech Journal of Food Sciences, 27, 71–79.

    Article  Google Scholar 

  92. Wen, L., Xia, N., Tang, P., Hong, Y., Wang, Z., Liu, Y., et al. (2015). The gastrointestinal irritation of polygala saponins and its potential mechanism in vitro and in vivo. BioMed Research International, 2015, 1–8.

    Google Scholar 

  93. Holmes, R. P., & Assimos, D. G. (2004). The impact of dietary oxalate on kidney stone formation. Urological Research, 32(5), 311–316.

    Article  CAS  PubMed  Google Scholar 

  94. Fund, A. K. Kidney-friendly diet for CKD. Retrieved from http://www.kidneyfund.org/kidney-disease/chronic-kidney-disease-ckd/kidney-friendly-diet-for-ckd.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sawsan G. Mohammed or M. Walid Qoronfleh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohammed, S.G., Bossa, S., Qoronfleh, M.W. (2020). Grains. In: Essa, M., Qoronfleh, M. (eds) Personalized Food Intervention and Therapy for Autism Spectrum Disorder Management. Advances in Neurobiology, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-030-30402-7_11

Download citation

Publish with us

Policies and ethics