Skip to main content

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 24))

Abstract

Fruits come in a wide variety of colors, shapes, and flavors. This chapter will cover selected fruits that are known to be healthy and highly nutritious. These fruits were chosen due to their common usage and availability. Since it is not possible to cover all health benefits or essential nutrients and important phytochemicals of the fruit composition, this chapter will focus on the key valuable constituents and their potential health effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dreher, M. L., & Davenport, A. J. (2013). Hass avocado composition and potential health effects. Critical Reviews in Food Science and Nutrition, 53(7), 738–750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yoneyama, S., et al. (2007). Dietary intake of fatty acids and serum C-reactive protein in Japanese. Journal of Epidemiology, 17(3), 86–92.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Basu, A., Devaraj, S., & Jialal, I. (2006). Dietary factors that promote or retard inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 26(5), 995–1001.

    Article  CAS  PubMed  Google Scholar 

  4. Menendez, J. A., & Lupu, R. (2006). Mediterranean dietary traditions for the molecular treatment of human cancer: Anti-oncogenic actions of the main olive oil’s monounsaturated fatty acid oleic acid (18:1n-9). Current Pharmaceutical Biotechnology, 7(6), 495–502.

    Article  CAS  PubMed  Google Scholar 

  5. Blotman, F., et al. (1997). Efficacy and safety of avocado/soybean unsaponifiables in the treatment of symptomatic osteoarthritis of the knee and hip. A prospective, multicenter, three-month, randomized, double-blind, placebo-controlled trial. Revue du Rhumatisme (English Ed.), 64(12), 825–834.

    CAS  Google Scholar 

  6. DiNubile, N. A. (2010). A potential role for avocado- and soybean-based nutritional supplements in the management of osteoarthritis: A review. The Physician and Sportsmedicine, 38(2), 71–81.

    Article  PubMed  Google Scholar 

  7. Simonsen, N. R., et al. (1998). Tissue stores of individual monounsaturated fatty acids and breast cancer: The EURAMIC study. European Community Multicenter Study on Antioxidants, Myocardial Infarction, and Breast Cancer. The American Journal of Clinical Nutrition, 68(1), 134–141.

    Article  CAS  PubMed  Google Scholar 

  8. Menendez, J. A., et al. (2005). Oleic acid, the main monounsaturated fatty acid of olive oil, suppresses Her-2/neu (erbB-2) expression and synergistically enhances the growth inhibitory effects of trastuzumab (Herceptin) in breast cancer cells with Her-2/neu oncogene amplification. Annals of Oncology, 16(3), 359–371.

    Article  CAS  PubMed  Google Scholar 

  9. Ding, H., et al. (2009). Selective induction of apoptosis of human oral cancer cell lines by avocado extracts via a ROS-mediated mechanism. Nutrition and Cancer, 61(3), 348–356.

    Article  CAS  PubMed  Google Scholar 

  10. D’Ambrosio, S. M., et al. (2011). Aliphatic acetogenin constituents of avocado fruits inhibit human oral cancer cell proliferation by targeting the EGFR/RAS/RAF/MEK/ERK1/2 pathway. Biochemical and Biophysical Research Communications, 409(3), 465–469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lu, Q. Y., et al. (2005). Inhibition of prostate cancer cell growth by an avocado extract: Role of lipid-soluble bioactive substances. The Journal of Nutritional Biochemistry, 16(1), 23–30.

    Article  CAS  PubMed  Google Scholar 

  12. Paul, R., Kulkarni, P., & Ganesh, N. (2011). Avocado fruit (Persea americana Mill) exhibits chemo-protective potentiality against cyclophosphamide induced genotoxicity in human lymphocyte culture. Journal of Experimental Therapeutics and Oncology, 9(3), 221–230.

    PubMed  Google Scholar 

  13. Duester, K. C. (2001). Avocado fruit is a rich source of beta-sitosterol. Journal of the Academy of Nutrition and Dietetics, 101(4), 404–405.

    CAS  Google Scholar 

  14. Kim, T. H., et al. (2012). Dietary supplements for benign prostatic hyperplasia: An overview of systematic reviews. Maturitas, 73(3), 180–185.

    Article  PubMed  Google Scholar 

  15. Naveh, E., et al. (2002). Defatted avocado pulp reduces body weight and total hepatic fat but increases plasma cholesterol in male rats fed diets with cholesterol. The Journal of Nutrition, 132(7), 2015–2018.

    Article  CAS  PubMed  Google Scholar 

  16. Burton-Freeman, B. (2000). Dietary fiber and energy regulation. The Journal of Nutrition, 130(2S Suppl), 272s–275s.

    Article  CAS  PubMed  Google Scholar 

  17. Wien, M., et al. (2013). A randomized 3x3 crossover study to evaluate the effect of Hass avocado intake on post-ingestive satiety, glucose and insulin levels, and subsequent energy intake in overweight adults. Nutrition Journal, 12, 155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pieterse, Z., et al. (2005). Substitution of high monounsaturated fatty acid avocado for mixed dietary fats during an energy-restricted diet: Effects on weight loss, serum lipids, fibrinogen, and vascular function. Nutrition, 21(1), 67–75.

    Article  CAS  PubMed  Google Scholar 

  19. Colquhoun, D. M., et al. (1992). Comparison of the effects on lipoproteins and apolipoproteins of a diet high in monounsaturated fatty acids, enriched with avocado, and a high-carbohydrate diet. American Journal of Clinical Nutrition, 56(4), 671–677.

    Article  CAS  Google Scholar 

  20. Carranza-Madrigal, J., et al. (1997). Effects of a vegetarian diet vs. a vegetarian diet enriched with avocado in hypercholesterolemic patients. Archives of Medical Research, 28(4), 537–541.

    CAS  PubMed  Google Scholar 

  21. Lopez Ledesma, R., et al. (1996). Monounsaturated fatty acid (avocado) rich diet for mild hypercholesterolemia. Archives of Medical Research, 27(4), 519–523.

    CAS  PubMed  Google Scholar 

  22. Alvizouri-Munoz, M., et al. (1992). Effects of avocado as a source of monounsaturated fatty acids on plasma lipid levels. Archives of Medical Research, 23(4), 163–167.

    CAS  PubMed  Google Scholar 

  23. Lerman-Garber, I., et al. (1994). Effect of a high-monounsaturated fat diet enriched with avocado in NIDDM patients. Diabetes Care, 17(4), 311–315.

    Article  CAS  PubMed  Google Scholar 

  24. Fulgoni 3rd, V. L., Dreher, M., & Davenport, A. J. (2013). Avocado consumption is associated with better diet quality and nutrient intake, and lower metabolic syndrome risk in US adults: Results from the National Health and Nutrition Examination Survey (NHANES) 2001-2008. Nutrition Journal, 12, 1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bentsen, H. (2017). Dietary polyunsaturated fatty acids, brain function and mental health. Microbial Ecology in Health and Disease, 28(sup1), 1281916.

    Article  PubMed Central  Google Scholar 

  26. Innis, S. M. (2008). Dietary omega 3 fatty acids and the developing brain. Brain Research, 1237, 35–43.

    Article  CAS  PubMed  Google Scholar 

  27. Bourre, J. M. (2004). Roles of unsaturated fatty acids (especially omega-3 fatty acids) in the brain at various ages and during ageing. The Journal of Nutrition, Health & Aging, 8(3), 163–174.

    CAS  Google Scholar 

  28. Unlu, N. Z., et al. (2005). Carotenoid absorption from salad and salsa by humans is enhanced by the addition of avocado or avocado oil. The Journal of Nutrition, 135(3), 431–436.

    Article  CAS  PubMed  Google Scholar 

  29. Cogswell, M. E., et al. (2012). Sodium and potassium intakes among US adults: NHANES 2003-2008. The American Journal of Clinical Nutrition, 96(3), 647–657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hoy, M. K., & Goldman, J. D. (2013). Potassium Intake of the U.S. Population, What We Eat In America, NHANES 2009–2010. The FASEB Journal, 27(1_supplement), 621–627.

    Google Scholar 

  31. Aburto, N. J., et al. (2013). Effect of increased potassium intake on cardiovascular risk factors and disease: Systematic review and meta-analyses. BMJ, 346, f1378.

    Article  PubMed  PubMed Central  Google Scholar 

  32. van Ballegooijen, A. J., & Beulens, J. W. (2017). The role of vitamin k status in cardiovascular health: Evidence from observational and clinical studies. Current Nutrition Reports, 6(3), 197–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pearson, D. A. (2007). Bone health and osteoporosis: The role of vitamin K and potential antagonism by anticoagulants. Nutrition in Clinical Practice, 22(5), 517–544.

    Article  PubMed  Google Scholar 

  34. Weber, P. (2001). Vitamin K and bone health. Nutrition, 17(10), 880–887.

    Article  CAS  PubMed  Google Scholar 

  35. Greenberg, J. A., et al. (2011). Folic ACID supplementation and pregnancy: More than just neural tube defect prevention. Reviews in Obstetrics and Gynecology, 4(2), 52–59.

    PubMed  PubMed Central  Google Scholar 

  36. Pitkin, R. M. (2007). Folate and neural tube defects. The American Journal of Clinical Nutrition, 85(1), 285s–288s.

    Article  CAS  PubMed  Google Scholar 

  37. Wilson, R. D., et al. (2003). The use of folic acid for the prevention of neural tube defects and other congenital anomalies. Journal of Obstetrics and Gynaecology Canada, 25(11), 959–973.

    Article  PubMed  Google Scholar 

  38. Iuliano, M., De Tommaso, G., & Ragone, R. (2009). Homocysteine disulphides and vascular disease. Disease Markers, 27(2), 55–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Aleman, G., Tovar, A. R., & Torres, N. (2001). Homocysteine metabolism and risk of cardiovascular diseases: Importance of the nutritional status on folic acid, vitamins B6 and B12. Revista de Investigación Clínica, 53(2), 141–151.

    CAS  PubMed  Google Scholar 

  40. Blom, H. J., & Smulders, Y. (2011). Overview of homocysteine and folate metabolism. With special references to cardiovascular disease and neural tube defects. Journal of Inherited Metabolic Disease, 34(1), 75–81.

    Article  CAS  PubMed  Google Scholar 

  41. Ganguly, P., & Alam, S. F. (2015). Role of homocysteine in the development of cardiovascular disease. Nutrition Journal, 14, 6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Delcourt, C., et al. (2006). Plasma lutein and zeaxanthin and other carotenoids as modifiable risk factors for age-related maculopathy and cataract: The POLA Study. Investigative Ophthalmology and Visual Science, 47(6), 2329–2335.

    Article  PubMed  Google Scholar 

  43. Palombo, P., et al. (2007). Beneficial long-term effects of combined oral/topical antioxidant treatment with the carotenoids lutein and zeaxanthin on human skin: A double-blind, placebo-controlled study. Skin Pharmacology and Physiology, 20(4), 199–210.

    Article  CAS  PubMed  Google Scholar 

  44. Pullar, J. M., Carr, A. C., & Vissers, M. C. M. (2017). The roles of vitamin C in skin health. Nutrients, 9(8), 866.

    Article  CAS  PubMed Central  Google Scholar 

  45. Satterfield, D., Taube, D., & Kenney, M. C. (1988). Effect of vitamin E on the production of collagen, DNA and fibronectin in keratocytes in vitro. Ophthalmic Research, 20(4), 227–231.

    Article  CAS  PubMed  Google Scholar 

  46. Sharaev, P. N., Bogdanov, N. G., & Iamaldinov, R. N. (1976). Collagen metabolism in the skin with different vitamin K regimens. Biulleten’eksperimental’noi biologii i meditsiny, 81(6), 665–666.

    CAS  Google Scholar 

  47. Korać, R. R., & Khambholja, K. M. (2011). Potential of herbs in skin protection from ultraviolet radiation. Pharmacognosy Reviews, 5(10), 164–173.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Scott, T. M., et al. (2017). Avocado consumption increases macular pigment density in older adults: A randomized, controlled trial. Nutrients, 9(9), 919.

    Article  CAS  PubMed Central  Google Scholar 

  49. Forster, M., et al. (2003). Distribution of nutrients in edible banana pulp. Food Technology and Biotechnology, 41(2), 167–171.

    CAS  Google Scholar 

  50. Salih, Z., et al. (2017). Physicochemical and functional properties of pulp and peel flour of dried green and ripe banana (Cavendish). International Journal of Research in Agricultural Sciences, 4, 348–353.

    Google Scholar 

  51. Alkarkhi, A., et al. (2011). Comparing physicochemical properties of banana pulp and peel flours prepared from green and ripe fruits. Food Chemistry, 129(2), 312–318.

    Article  CAS  PubMed  Google Scholar 

  52. Haddy, F. J., Vanhoutte, P. M., & Feletou, M. (2006). Role of potassium in regulating blood flow and blood pressure. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 290(3), R546–R552.

    Article  CAS  PubMed  Google Scholar 

  53. Whelton, P. K., et al. (1997). Effects of oral potassium on blood pressure. Meta-analysis of randomized controlled clinical trials. JAMA, 277(20), 1624–1632.

    Article  CAS  PubMed  Google Scholar 

  54. Houston, M. C. (2011). The importance of potassium in managing hypertension. Current Hypertension Reports, 13(4), 309–317.

    Article  CAS  PubMed  Google Scholar 

  55. Seth, A., et al. (2014). Potassium intake and risk of stroke in women with hypertension and nonhypertension in the Women’s Health Initiative. Stroke, 45(10), 2874–2880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. D’Elia, L., et al. (2011). Potassium intake, stroke, and cardiovascular disease a meta-analysis of prospective studies. Journal of the American College of Cardiology, 57(10), 1210–1219.

    Article  CAS  PubMed  Google Scholar 

  57. Weaver, C. M. (2013). Potassium and health. Advances in Nutrition, 4(3), 368s–377s.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. He, F. J., & MacGregor, G. A. (2008). Beneficial effects of potassium on human health. Physiologia Plantarum, 133(4), 725–735.

    Article  CAS  PubMed  Google Scholar 

  59. Kanazawa, K., & Sakakibara, H. (2000). High content of dopamine, a strong antioxidant, in Cavendish banana. Journal of Agricultural and Food Chemistry, 48(3), 844–848.

    Article  CAS  PubMed  Google Scholar 

  60. Someya, S., Yoshiki, Y., & Okubo, K. (2002). Antioxidant compounds from banana (Musa Cavendish). Food Chemistry, 79(3), 351–354.

    Article  CAS  Google Scholar 

  61. Fox, C., Ramsoomair, D., & Carter, C. (2001). Magnesium: Its proven and potential clinical significance. Southern Medical Journal, 94(12), 1195–1201.

    Article  CAS  PubMed  Google Scholar 

  62. Geiger, H., & Wanner, C. (2012). Magnesium in disease. Clinical Kidney Journal, 5(Suppl 1), i25–i38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Volpe, S. L. (2013). Magnesium in disease prevention and overall health. Advances in Nutrition, 4(3), 378s–383s.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Avila, D. S., Puntel, R. L., & Aschner, M. (2013). Manganese in health and disease. Metal Ions in Life Sciences, 13, 199–227.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Aschner, J. L., & Aschner, M. (2005). Nutritional aspects of manganese homeostasis. Molecular Aspects of Medicine, 26(4-5), 353–362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Takeda, A. (2003). Manganese action in brain function. Brain Research. Brain Research Reviews, 41(1), 79–87.

    Article  CAS  PubMed  Google Scholar 

  67. Guilarte, T. R. (2010). Manganese and Parkinson’s disease: A critical review and new findings. Environmental Health Perspectives, 118(8), 1071–1080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Buttriss, J. L., & Stokes, C. S. (2008). Dietary fibre and health: An overview. Nutrition Bulletin, 33(3), 186–200.

    Article  Google Scholar 

  69. Anderson, J. W., et al. (2009). Health benefits of dietary fiber. Nutrition Reviews, 67(4), 188–205.

    Article  PubMed  Google Scholar 

  70. Zhang, P., et al. (2005). Banana starch: Production, physicochemical properties, and digestibility - A review. Carbohydrate Polymers, 59, 443–458.

    Article  CAS  Google Scholar 

  71. Bird, A. R., Brown, I. L., & Topping, D. L. (2000). Starches, resistant starches, the gut microflora and human health. Current Issues in Intestinal Microbiology, 1(1), 25–37.

    CAS  PubMed  Google Scholar 

  72. Topping, D. L., & Clifton, P. M. (2001). Short-chain fatty acids and human colonic function: Roles of resistant starch and nonstarch polysaccharides. Physiological Reviews, 81(3), 1031–1064.

    Article  CAS  PubMed  Google Scholar 

  73. Duan, X., et al. (2008). Modification of pectin polysaccharides during ripening of postharvest banana fruit. Food Chemistry, 111, 144–149.

    Article  CAS  Google Scholar 

  74. Moongngarm, A. (2013). Chemical compositions and resistant starch content in starchy foods. American Journal of Agricultural and Biological Sciences, 8, 107–113.

    Article  CAS  Google Scholar 

  75. Threapleton, D. E., et al. (2013). Dietary fibre intake and risk of cardiovascular disease: Systematic review and meta-analysis. BMJ, 347, f6879.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Satija, A., & Hu, F. B. (2012). Cardiovascular benefits of dietary fiber. Current Atherosclerosis Reports, 14(6), 505–514.

    Article  CAS  PubMed  Google Scholar 

  77. Viuda-Martos, M., et al. (2010). Role of fiber in cardiovascular diseases: A review. Comprehensive Reviews in Food Science and Food Safety, 9(2), 240–258.

    Article  CAS  Google Scholar 

  78. Bodinham, C. L., Frost, G. S., & Robertson, M. D. (2010). Acute ingestion of resistant starch reduces food intake in healthy adults. British Journal of Nutrition, 103(6), 917–922.

    Article  CAS  Google Scholar 

  79. Salas-Salvado, J., et al. (2008). Effect of two doses of a mixture of soluble fibres on body weight and metabolic variables in overweight or obese patients: A randomised trial. British Journal of Nutrition, 99(6), 1380–1387.

    Article  CAS  Google Scholar 

  80. Anderson, G. H., et al. (2010). Relation between estimates of cornstarch digestibility by the Englyst in vitro method and glycemic response, subjective appetite, and short-term food intake in young men. The American Journal of Clinical Nutrition, 91(4), 932–939.

    Article  CAS  PubMed  Google Scholar 

  81. Willis, H. J., et al. (2009). Greater satiety response with resistant starch and corn bran in human subjects. Nutrition Research, 29(2), 100–105.

    Article  CAS  PubMed  Google Scholar 

  82. Higgins, J. A. (2014). Resistant starch and energy balance: Impact on weight loss and maintenance. Critical Reviews in Food Science and Nutrition, 54(9), 1158–1166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Clark, M. J., & Slavin, J. L. (2013). The effect of fiber on satiety and food intake: A systematic review. Journal of the American College of Nutrition, 32(3), 200–211.

    Article  CAS  PubMed  Google Scholar 

  84. Robertson, M. D., et al. (2005). Insulin-sensitizing effects of dietary resistant starch and effects on skeletal muscle and adipose tissue metabolism. The American Journal of Clinical Nutrition, 82(3), 559–567.

    Article  CAS  PubMed  Google Scholar 

  85. Maki, K. C., et al. (2012). Resistant starch from high-amylose maize increases insulin sensitivity in overweight and obese men. The Journal of Nutrition, 142(4), 717–723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Schwartz, S. E., et al. (1982). Sustained pectin ingestion delays gastric emptying. Gastroenterology, 83(4), 812–817.

    CAS  PubMed  Google Scholar 

  87. Schwartz, S. E., et al. (1988). Sustained pectin ingestion: Effect on gastric emptying and glucose tolerance in non-insulin-dependent diabetic patients. The American Journal of Clinical Nutrition, 48(6), 1413–1417.

    Article  CAS  PubMed  Google Scholar 

  88. Dahl, W. J., & Stewart, M. L. (2015). Position of the Academy of Nutrition and Dietetics: Health implications of dietary fiber. Journal of the Academy of Nutrition and Dietetics, 115(11), 1861–1870.

    Article  PubMed  Google Scholar 

  89. Leonel, A. J., & Alvarez-Leite, J. I. (2012). Butyrate: Implications for intestinal function. Current Opinion in Clinical Nutrition and Metabolic Care, 15(5), 474–479.

    Article  CAS  PubMed  Google Scholar 

  90. Maclure, M., & Willett, W. (1990). A case-control study of diet and risk of renal adenocarcinoma. Epidemiology, 1(6), 430–440.

    Article  CAS  PubMed  Google Scholar 

  91. Rashidkhani, B., Lindblad, P., & Wolk, A. (2005). Fruits, vegetables and risk of renal cell carcinoma: A prospective study of Swedish women. International Journal of Cancer, 113(3), 451–455.

    Article  CAS  PubMed  Google Scholar 

  92. Olano-Martin, E., et al. (2003). Pectin and pectic-oligosaccharides induce apoptosis in in vitro human colonic adenocarcinoma cells. Anticancer Research, 23(1a), 341–346.

    CAS  PubMed  Google Scholar 

  93. Leclere, L., Cutsem, P. V., & Michiels, C. (2013). Anti-cancer activities of pH- or heat-modified pectin. Frontiers in Pharmacology, 4, 128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ferraro, P. M., et al. (2016). Dietary protein and potassium, diet-dependent net acid load, and risk of incident kidney stones. Clinical Journal of the American Society of Nephrology, 11(10), 1834–1844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zerwekh, J. E., et al. (2007). Reduction of renal stone risk by potassium-magnesium citrate during 5 weeks of bed rest. The Journal of Urology, 177(6), 2179–2184.

    Article  CAS  PubMed  Google Scholar 

  96. Panigrahi, P. N., et al. (2017). Antiurolithiatic and antioxidant efficacy of Musa paradisiaca pseudostem on ethylene glycol-induced nephrolithiasis in rat. Indian Journal of Pharmacology, 49(1), 77–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Obrenovich, M. E., et al. (2011). Antioxidants in health, disease and aging. CNS & Neurological Disorders Drug Targets, 10(2), 192–207.

    Article  CAS  Google Scholar 

  98. Wang, X., et al. (2014). Flavonoid intake and risk of CVD: A systematic review and meta-analysis of prospective cohort studies. British Journal of Nutrition, 111(1), 1–11.

    Article  CAS  Google Scholar 

  99. Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: An overview. Journal of Nutritional Science, 5, e47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kozlowska, A., & Szostak-Wegierek, D. (2014). Flavonoids--food sources and health benefits. Roczniki Państwowego Zakładu Higieny, 65(2), 79–85.

    PubMed  Google Scholar 

  101. Singh, H., Bhaskar, D. J., & Rehman, R. (2014). Do ripe bananas with brown spots fight cancer? International Journal of Dental and Medical Research, 1(2), 4–5.

    Google Scholar 

  102. Iwasawa, H., & Yamazaki, M. (2009). Differences in biological response modifier-like activities according to the strain and maturity of bananas. Food Science and Technology Research, 15, 275–282.

    Article  CAS  Google Scholar 

  103. Pfeffer, K. (2003). Biological functions of tumor necrosis factor cytokines and their receptors. Cytokine & Growth Factor Reviews, 14(3-4), 185–191.

    Article  CAS  Google Scholar 

  104. Shaw, K., Turner, J., & Del Mar, C. (2002). Tryptophan and 5-hydroxytryptophan for depression. Cochrane Database of Systematic Reviews, 1, Cd003198.

    Google Scholar 

  105. Nieman, D. C., et al. (2012). Bananas as an energy source during exercise: A metabolomics approach. PLoS One, 7(5), e37479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Norris Jr., F. H., Gasteiger, E. L., & Chatfield, P. O. (1957). An electromyographic study of induced and spontaneous muscle cramps. Electroencephalography and Clinical Neurophysiology, 9(1), 139–147.

    Article  PubMed  Google Scholar 

  107. Miller, K. C. (2012). Plasma potassium concentration and content changes after banana ingestion in exercised men. Journal of Athletic Training, 47(6), 648–654.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Bergeron, M. F. (2003). Heat cramps: Fluid and electrolyte challenges during tennis in the heat. Journal of Science and Medicine in Sport, 6(1), 19–27.

    Article  CAS  PubMed  Google Scholar 

  109. Stofan, J. R., et al. (2005). Sweat and sodium losses in NCAA football players: A precursor to heat cramps? International Journal of Sport Nutrition and Exercise Metabolism, 15(6), 641–652.

    Article  PubMed  Google Scholar 

  110. Schwellnus, M. P., Drew, N., & Collins, M. (2008). Muscle cramping in athletes--risk factors, clinical assessment, and management. Clinics in Sports Medicine, 27(1), 183–94, ix-x.

    Article  PubMed  Google Scholar 

  111. Hermansen, K., et al. (1992). Influence of ripeness of banana on the blood glucose and insulin response in type 2 diabetic subjects. Diabetic Medicine, 9(8), 739–743.

    Article  CAS  PubMed  Google Scholar 

  112. O’Keefe, A. W., & Ben-Shoshan, M. (2014). A 4-month-old baby boy presenting with anaphylaxis to a banana: A case report. Journal of Medical Case Reports, 8, 62.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Antal, E. J., et al. (2001). Linezolid, a novel oxazolidinone antibiotic: Assessment of monoamine oxidase inhibition using pressor response to oral tyramine. The Journal of Clinical Pharmacology, 41(5), 552–562.

    Article  CAS  PubMed  Google Scholar 

  114. Rumore, M. M., Roth, M., & Orfanos, A. (2010). Dietary tyramine restriction for hospitalized patients on linezolid: An update. Nutrition in Clinical Practice, 25(3), 265–269.

    Article  PubMed  Google Scholar 

  115. Silber, B. Y., & Schmitt, J. A. (2010). Effects of tryptophan loading on human cognition, mood, and sleep. Neuroscience and Biobehavioral Reviews, 34(3), 387–407.

    Article  CAS  PubMed  Google Scholar 

  116. Peuhkuri, K., Sihvola, N., & Korpela, R. (2012). Diet promotes sleep duration and quality. Nutrition Research, 32(5), 309–319.

    Article  CAS  PubMed  Google Scholar 

  117. Simon, L. V., & Farrell, M. W. (2018). Hyperkalemia. Treasure Island, FL: StatPearls Publishing.

    Google Scholar 

  118. Medicine IO. (2005). Potassium. In Dietary reference intakes for water, potassium, sodium, chloride, and sulfate (pp. 186–268). Washington, DC: The National Academies Press.

    Google Scholar 

  119. Wolfe, K. L., et al. (2008). Cellular antioxidant activity of common fruits. Journal of Agricultural and Food Chemistry, 56(18), 8418–8426.

    Article  CAS  PubMed  Google Scholar 

  120. Pandey, K. B., & Rizvi, S. I. (2009). Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Medicine and Cellular Longevity, 2(5), 270–278.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Olas, B. (2018). Berry phenolic antioxidants - Implications for human health? Frontiers in Pharmacology, 9, 78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Williamson, G. (2017). The role of polyphenols in modern nutrition. Nutrition Bulletin, 42(3), 226–235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Skrovankova, S., et al. (2015). Bioactive compounds and antioxidant activity in different types of berries. International Journal of Molecular Sciences, 16(10), 24673–24706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Manganaris, G. A., et al. (2014). Berry antioxidants: Small fruits providing large benefits. Journal of the Science of Food and Agriculture, 94(5), 825–833.

    Article  CAS  PubMed  Google Scholar 

  125. Vauzour, D., et al. (2010). Polyphenols and human health: Prevention of disease and mechanisms of action. Nutrients, 2(11), 1106–1131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Huang, W. Y., et al. (2012). Survey of antioxidant capacity and phenolic composition of blueberry, blackberry, and strawberry in Nanjing. Journal of Zhejiang University. Science. B, 13(2), 94–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kähkönen, M. P., Hopia, A. I., & Heinonen, M. (2001). Berry phenolics and their antioxidant activity. Journal of Agricultural and Food Chemistry, 49(8), 4076–4082.

    Article  CAS  PubMed  Google Scholar 

  128. Luis, A., Domingues, F., & Pereira, L. (2018). Association between berries intake and cardiovascular diseases risk factors: A systematic review with meta-analysis and trial sequential analysis of randomized controlled trials. Food & Function, 9(2), 740–757.

    Article  CAS  Google Scholar 

  129. Zhao, C. N., et al. (2017). Fruits for prevention and treatment of cardiovascular diseases. Nutrients, 9(6), 598.

    Article  CAS  PubMed Central  Google Scholar 

  130. Huang, H., et al. (2016). Effects of berries consumption on cardiovascular risk factors: A meta-analysis with trial sequential analysis of randomized controlled trials. Scientific Reports, 6, 23625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Basu, A., Rhone, M., & Lyons, T. J. (2010). Berries: Emerging impact on cardiovascular health. Nutrition Reviews, 68(3), 168–177.

    Article  PubMed  Google Scholar 

  132. Erlund, I., et al. (2008). Favorable effects of berry consumption on platelet function, blood pressure, and HDL cholesterol. The American Journal of Clinical Nutrition, 87(2), 323–331.

    Article  CAS  PubMed  Google Scholar 

  133. Vendrame, S., et al. (2016). Berry fruit consumption and metabolic syndrome. Antioxidants (Basel), 5(4), 34.

    Article  CAS  Google Scholar 

  134. Tsuda, T. (2016). Recent progress in anti-obesity and anti-diabetes effect of berries. Antioxidants (Basel), 5(2), 13.

    Article  CAS  Google Scholar 

  135. Kowalska, K., & Olejnik, A. (2016). Current evidence on the health-beneficial effects of berry fruits in the prevention and treatment of metabolic syndrome. Current Opinion in Clinical Nutrition and Metabolic Care, 19(6), 446–452.

    Article  CAS  PubMed  Google Scholar 

  136. Lehtonen, H. M., et al. (2010). Berry meals and risk factors associated with metabolic syndrome. European Journal of Clinical Nutrition, 64(6), 614–621.

    Article  CAS  PubMed  Google Scholar 

  137. Del Bo, C., et al. (2015). Berries and oxidative stress markers: An overview of human intervention studies. Food & Function, 6(9), 2890–2917.

    Article  CAS  Google Scholar 

  138. Joseph, S. V., Edirisinghe, I., & Burton-Freeman, B. M. (2014). Berries: Anti-inflammatory effects in humans. Journal of Agricultural and Food Chemistry, 62(18), 3886–3903.

    Article  CAS  PubMed  Google Scholar 

  139. Joseph, S. V., Edirisinghe, I., & Burton-Freeman, B. M. (2016). Fruit polyphenols: A review of anti-inflammatory effects in humans. Critical Reviews in Food Science and Nutrition, 56(3), 419–444.

    Article  CAS  PubMed  Google Scholar 

  140. Nardi, G. M., et al. (2016). Anti-inflammatory activity of berry fruits in mice model of inflammation is based on oxidative stress modulation. Pharmacognosy Research, 8(Suppl 1), S42–S49.

    PubMed  PubMed Central  Google Scholar 

  141. McDougall, G. J., Kulkarni, N. N., & Stewart, D. (2008). Current developments on the inhibitory effects of berry polyphenols on digestive enzymes. Biofactors, 34(1), 73–80.

    Article  PubMed  Google Scholar 

  142. Kristo, A. S., Klimis-Zacas, D., & Sikalidis, A. K. (2016). Protective role of dietary berries in cancer. Antioxidants (Basel), 5(4), 37.

    Article  CAS  Google Scholar 

  143. Zhou, Y., et al. (2016). Natural polyphenols for prevention and treatment of cancer. Nutrients, 8(8), 515.

    Article  CAS  PubMed Central  Google Scholar 

  144. Abdal Dayem, A., et al. (2016). The anti-cancer effect of polyphenols against breast cancer and cancer stem cells: Molecular mechanisms. Nutrients, 8(9), 581.

    Article  CAS  PubMed Central  Google Scholar 

  145. Lall, R. K., et al. (2015). Dietary polyphenols in prevention and treatment of prostate cancer. International Journal of Molecular Sciences, 16(2), 3350–3376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kammeyer, A., & Luiten, R. M. (2015). Oxidation events and skin aging. Ageing Research Reviews, 21, 16–29.

    Article  CAS  PubMed  Google Scholar 

  147. Kelly, E., Vyas, P., & Weber, J. T. (2017). Biochemical properties and neuroprotective effects of compounds in various species of berries. Molecules, 23(1), 26.

    Article  CAS  PubMed Central  Google Scholar 

  148. Keservani, R. K., Sharma, A. K., & Kesharwani, R. K. (2016). Medicinal effect of nutraceutical fruits for the cognition and brain health. Scientifica (Cairo), 2016, 3109254.

    Google Scholar 

  149. Shukitt-Hale, B., et al. (2015). The beneficial effects of berries on cognition, motor behaviour and neuronal function in ageing. British Journal of Nutrition, 114(10), 1542–1549.

    Article  CAS  Google Scholar 

  150. Subash, S., et al. (2014). Neuroprotective effects of berry fruits on neurodegenerative diseases. Neural Regeneration Research, 9(16), 1557–1566.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Devore, E. E., et al. (2012). Dietary intakes of berries and flavonoids in relation to cognitive decline. Annals of Neurology, 72(1), 135–143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kaume, L., Howard, L. R., & Devareddy, L. (2012). The blackberry fruit: A review on its composition and chemistry, metabolism and bioavailability, and health benefits. Journal of Agricultural and Food Chemistry, 60(23), 5716–5727.

    Article  CAS  PubMed  Google Scholar 

  153. Verma, R., et al. (2014). Rubus fruticosus (blackberry) use as an herbal medicine. Pharmacognosy Reviews, 8(16), 101–104.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Oszmianski, J., et al. (2015). Analysis of phenolic compounds and antioxidant activity in wild blackberry fruits. International Journal of Molecular Sciences, 16(7), 14540–14553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Khoo, H. E., et al. (2017). Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & Nutrition Research, 61(1), 1361779.

    Article  CAS  Google Scholar 

  156. Azofeifa, G., et al. (2013). Antioxidant and anti-inflammatory in vitro activities of phenolic compounds from tropical highland blackberry (Rubus adenotrichos). Journal of Agricultural and Food Chemistry, 61(24), 5798–5804.

    Article  CAS  PubMed  Google Scholar 

  157. Wang, S. Y., & Lin, H. S. (2000). Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. Journal of Agricultural and Food Chemistry, 48(2), 140–146.

    Article  CAS  PubMed  Google Scholar 

  158. Zielonka-Brzezicka, J., et al. (2016). Comparison of the antioxidant properties of selected parts of raspberry (Rubus idaeus) and blackberry (Rubus fruticosus). Pomeranian Journal of Life Sciences, 62(4), 52–59.

    PubMed  Google Scholar 

  159. Wu, T., et al. (2018). Blackberry and blueberry anthocyanin supplementation counteract high-fat-diet-induced obesity by alleviating oxidative stress and inflammation and accelerating energy expenditure. Oxidative Medicine and Cellular Longevity, 2018, 4051232.

    PubMed  PubMed Central  Google Scholar 

  160. Lee, Y. M., et al. (2017). Dietary anthocyanins against obesity and inflammation. Nutrients, 9(10), 1089.

    Article  CAS  PubMed Central  Google Scholar 

  161. Blando, F., et al. (2018). Radical scavenging and anti-inflammatory activities of representative anthocyanin groupings from pigment-rich fruits and vegetables. International Journal of Molecular Sciences, 19(1), 169.

    Article  CAS  PubMed Central  Google Scholar 

  162. Esselen, M., et al. (2011). Anthocyanin-rich blackberry extract suppresses the DNA-damaging properties of topoisomerase I and II poisons in colon carcinoma cells. Journal of Agricultural and Food Chemistry, 59(13), 6966–6973.

    Article  CAS  PubMed  Google Scholar 

  163. Wang, L.-S., & Stoner, G. D. (2008). Anthocyanins and their role in cancer prevention. Cancer Letters, 269(2), 281–290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Lin, B. W., et al. (2017). Effects of anthocyanins on the prevention and treatment of cancer. British Journal of Pharmacology, 174(11), 1226–1243.

    Article  CAS  PubMed  Google Scholar 

  165. Stoner, G. D., Wang, L. S., & Casto, B. C. (2008). Laboratory and clinical studies of cancer chemoprevention by antioxidants in berries. Carcinogenesis, 29(9), 1665–1674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. de Sousa Moraes, L. F., et al. (2017). Anthocyanins/anthocyanidins and colorectal cancer: What is behind the scenes? Critical Reviews in Food Science and Nutrition, 59(1), 1–13.

    Google Scholar 

  167. Lippert, E., et al. (2017). Anthocyanins prevent colorectal cancer development in a mouse model. Digestion, 95(4), 275–280.

    Article  CAS  PubMed  Google Scholar 

  168. Ma, X., & Ning, S. (2019). Cyanidin-3-glucoside attenuates the angiogenesis of breast cancer via inhibiting STAT3/VEGF pathway. Phytotherapy Research, 33(1), 81–89.

    Article  CAS  PubMed  Google Scholar 

  169. Ding, M., et al. (2006). Cyanidin-3-glucoside, a natural product derived from blackberry, exhibits chemopreventive and chemotherapeutic activity. The Journal of Biological Chemistry, 281(25), 17359–17368.

    Article  CAS  PubMed  Google Scholar 

  170. Cassidy, A. (2018). Berry anthocyanin intake and cardiovascular health. Molecular Aspects of Medicine, 61, 76–82.

    Article  CAS  PubMed  Google Scholar 

  171. Wallace, T. C. (2011). Anthocyanins in cardiovascular disease. Advances in Nutrition, 2(1), 1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. de Pascual-Teresa, S., Moreno, D. A., & García-Viguera, C. (2010). Flavanols and anthocyanins in cardiovascular health: A review of current evidence. International Journal of Molecular Sciences, 11(4), 1679–1703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Reis, J. F., et al. (2016). Action mechanism and cardiovascular effect of anthocyanins: A systematic review of animal and human studies. Journal of Translational Medicine, 14(1), 315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Aghababaee, S. K., et al. (2015). Effects of blackberry (Morus nigra L.) consumption on serum concentration of lipoproteins, apo A-I, apo B, and high-sensitivity-C-reactive protein and blood pressure in dyslipidemic patients. Journal of Research in Medical Sciences : The Official Journal of Isfahan University of Medical Sciences, 20(7), 684–691.

    Article  Google Scholar 

  175. Kimble, R., et al. (2018). Dietary intake of anthocyanins and risk of cardiovascular disease: A systematic review and meta-analysis of prospective cohort studies. Critical Reviews in Food Science and Nutrition, 1–12. https://doi.org/10.1080/10408398.2018.1509835

  176. Cassidy, A., et al. (2016). Habitual intake of anthocyanins and flavanones and risk of cardiovascular disease in men. The American Journal of Clinical Nutrition, 104(3), 587–594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Wallace, T. C., Slavin, M., & Frankenfeld, C. L. (2016). Systematic review of anthocyanins and markers of cardiovascular disease. Nutrients, 8(1), 32.

    Article  CAS  PubMed Central  Google Scholar 

  178. Serraino, I., et al. (2003). Protective effects of cyanidin-3-O-glucoside from blackberry extract against peroxynitrite-induced endothelial dysfunction and vascular failure. Life Sciences, 73(9), 1097–1114.

    Article  CAS  PubMed  Google Scholar 

  179. Murapa, P., et al. (2012). Anthocyanin-rich fractions of blackberry extracts reduce UV-induced free radicals and oxidative damage in keratinocytes. Phytotherapy Research, 26(1), 106–112.

    Article  CAS  PubMed  Google Scholar 

  180. Wang, Y., et al. (2015). The protective effects of berry-derived anthocyanins against visible light-induced damage in human retinal pigment epithelial cells. Journal of the Science of Food and Agriculture, 95(5), 936–944.

    Article  CAS  PubMed  Google Scholar 

  181. Miyake, S., et al. (2012). Vision preservation during retinal inflammation by anthocyanin-rich bilberry extract: Cellular and molecular mechanism. Laboratory Investigation, 92(1), 102–109.

    Article  CAS  PubMed  Google Scholar 

  182. Ghosh, D., & Konishi, T. (2007). Anthocyanins and anthocyanin-rich extracts: Role in diabetes and eye function. Asia Pacific Journal of Clinical Nutrition, 16(2), 200–208.

    CAS  PubMed  Google Scholar 

  183. Shukitt-Hale, B., Cheng, V., & Joseph, J. A. (2009). Effects of blackberries on motor and cognitive function in aged rats. Nutritional Neuroscience, 12(3), 135–140.

    Article  CAS  PubMed  Google Scholar 

  184. Ma, H., et al. (2018). Evaluation of polyphenol anthocyanin-enriched extracts of blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry for free radical scavenging, reactive carbonyl species trapping, anti-glycation, anti-beta-amyloid aggregation, and microglial neuroprotective effects. International Journal of Molecular Sciences, 19(2), 461.

    Article  CAS  PubMed Central  Google Scholar 

  185. Strathearn, K. E., et al. (2014). Neuroprotective effects of anthocyanin- and proanthocyanidin-rich extracts in cellular models of Parkinson’s disease. Brain Research, 1555, 60–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Ames, B. N., Shigenaga, M. K., & Hagen, T. M. (1993). Oxidants, antioxidants, and the degenerative diseases of aging. Proceedings of the National Academy of Sciences, 90(17), 7915–7922.

    Article  CAS  Google Scholar 

  187. Dasari, S., et al. (2017). Vitamin K and its analogs: Potential avenues for prostate cancer management. Oncotarget, 8(34), 57782–57799.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Kong, P., et al. (2014). Vitamin intake reduce the risk of gastric cancer: Meta-analysis and systematic review of randomized and observational studies. PLoS One, 9(12), e116060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Jinghe, X., Mizuta, T., & Ozaki, I. (2015). Vitamin K and hepatocellular carcinoma: The basic and clinic. World Journal of Clinical Cases: WJCC, 3(9), 757–764.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Liu, B.-C., et al. (2016). Vitamin K2-induced inhibition of colorectal cancer cell proliferation and its underlying mechanisms. International Journal of Clinical and Experimental Pathology, 9(5), 4992–5003.

    CAS  Google Scholar 

  191. Ivanova, D., et al. (2018). Vitamins C and K3: A powerful redox system for sensitizing leukemia lymphocytes to everolimus and barasertib. Anticancer Research, 38(3), 1407–1414.

    CAS  PubMed  Google Scholar 

  192. McGuire, K., et al. (2013). Vitamin C and K3 combination causes enhanced anticancer activity against rt-4 bladder cancer cells. Journal of Cancer Science and Therapy, 5(10), 325–333.

    Google Scholar 

  193. Hemmati, A. A., et al. (2014). Topical vitamin K1 promotes repair of full thickness wound in rat. Indian Journal of Pharmacology, 46(4), 409–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Gonzalez, O. A., et al. (2013). Antibacterial effects of blackberry extract target periodontopathogens. Journal of Periodontal Research, 48(1), 80–86.

    Article  CAS  PubMed  Google Scholar 

  195. Danaher, R. J., et al. (2011). Antiviral effects of blackberry extract against herpes simplex virus type 1. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 112(3), e31–e35.

    Article  PubMed  Google Scholar 

  196. Burton-Freeman, B. M., Sandhu, A. K., & Edirisinghe, I. (2016). Red raspberries and their bioactive polyphenols: Cardiometabolic and neuronal health links. Advances in Nutrition, 7(1), 44–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Rao, A. V., & Snyder, D. M. (2010). Raspberries and human health: A review. Journal of Agricultural and Food Chemistry, 58(7), 3871–3883.

    Article  CAS  PubMed  Google Scholar 

  198. Ludwig, I. A., et al. (2015). New insights into the bioavailability of red raspberry anthocyanins and ellagitannins. Free Radical Biology and Medicine, 89, 758–769.

    Article  CAS  PubMed  Google Scholar 

  199. Derosa, G., Maffioli, P., & Sahebkar, A. (2016). Ellagic acid and its role in chronic diseases. Advances in Experimental Medicine and Biology, 928, 473–479.

    Article  CAS  PubMed  Google Scholar 

  200. Jeong, H. S., et al. (2014). Effects of black raspberry on lipid profiles and vascular endothelial function in patients with metabolic syndrome. Phytotherapy Research, 28(10), 1492–1498.

    Article  PubMed  Google Scholar 

  201. Bae, J. Y., et al. (2010). Dietary compound ellagic acid alleviates skin wrinkle and inflammation induced by UV-B irradiation. Experimental Dermatology, 19(8), e182–e190.

    Article  PubMed  Google Scholar 

  202. Boukharta, M., Jalbert, G., & Castonguay, A. (1992). Biodistribution of ellagic acid and dose-related inhibition of lung tumorigenesis in A/J mice. Nutrition and Cancer, 18(2), 181–189.

    Article  CAS  PubMed  Google Scholar 

  203. Ceci, C., et al. (2016). Ellagic acid inhibits bladder cancer invasiveness and in vivo tumor growth. Nutrients, 8(11), E744.

    Article  CAS  PubMed  Google Scholar 

  204. Wang, N., et al. (2017). Direct inhibition of ACTN4 by ellagic acid limits breast cancer metastasis via regulation of beta-catenin stabilization in cancer stem cells. Journal of Experimental & Clinical Cancer Research, 36(1), 172.

    Article  CAS  Google Scholar 

  205. Mukhtar, H., et al. (1984). Protection against 3-methylcholanthrene-induced skin tumorigenesis in Balb/C mice by ellagic acid. Biochemical and Biophysical Research Communications, 119(2), 751–757.

    Article  CAS  PubMed  Google Scholar 

  206. Kresty, L. A., Mallery, S. R., & Stoner, G. D. (2016). Black raspberries in cancer clinical trials: Past, present and future. Journal of Berry Research, 6(2), 251–261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Shi, N., et al. (2017). Suppression of oxidative stress and NFkappaB/MAPK signaling by lyophilized black raspberries for esophageal cancer prevention in rats. Nutrients, 9(4), 413.

    Article  CAS  PubMed Central  Google Scholar 

  208. Casto, B. C., et al. (2002). Chemoprevention of oral cancer by black raspberries. Anticancer Research, 22(6c), 4005–4015.

    CAS  PubMed  Google Scholar 

  209. Wang, L. S., et al. (2011). Modulation of genetic and epigenetic biomarkers of colorectal cancer in humans by black raspberries: A phase I pilot study. Clinical Cancer Research, 17(3), 598–610.

    Article  CAS  PubMed  Google Scholar 

  210. Wang, L. S., et al. (2009). Anthocyanins in black raspberries prevent esophageal tumors in rats. Cancer Prevention Research (Philadelphia, Pa.), 2(1), 84–93.

    Article  CAS  Google Scholar 

  211. Noratto, G., Chew, B. P., & Ivanov, I. (2016). Red raspberry decreases heart biomarkers of cardiac remodeling associated with oxidative and inflammatory stress in obese diabetic db/db mice. Food & Function, 7(12), 4944–4955.

    Article  CAS  Google Scholar 

  212. Smeriglio, A., et al. (2017). Proanthocyanidins and hydrolysable tannins: Occurrence, dietary intake and pharmacological effects. British Journal of Pharmacology, 174(11), 1244–1262.

    Article  CAS  PubMed  Google Scholar 

  213. Fairlie-Jones, L., et al. (2017). The effect of anthocyanin-rich foods or extracts on vascular function in adults: A systematic review and meta-analysis of randomised controlled trials. Nutrients, 9(8), 908.

    Article  CAS  PubMed Central  Google Scholar 

  214. Ash, M. M., et al. (2011). Unrefined and refined black raspberry seed oils significantly lower triglycerides and moderately affect cholesterol metabolism in male Syrian hamsters. Journal of Medicinal Food, 14(9), 1032–1038.

    Article  CAS  PubMed  Google Scholar 

  215. Oomah, B. D., et al. (2000). Characteristics of raspberry (Rubus idaeus L.) seed oil. Food Chemistry, 69, 187–193.

    Article  CAS  Google Scholar 

  216. Aiyer, H. S., et al. (2008). Dietary berries and ellagic acid prevent oxidative DNA damage and modulate expression of DNA repair genes. International Journal of Molecular Sciences, 9(3), 327–341.

    Article  PubMed  PubMed Central  Google Scholar 

  217. Patisaul, H. B., & Jefferson, W. (2010). The pros and cons of phytoestrogens. Frontiers in Neuroendocrinology, 31(4), 400–419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Al-Anazi, A. F., et al. (2011). Preventive effects of phytoestrogens against postmenopausal osteoporosis as compared to the available therapeutic choices: An overview. Journal of Natural Science, Biology, and Medicine, 2(2), 154–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Montbriand, M. J. (2004). Herbs or natural products that increase cancer growth or recurrence. Part two of a four-part series. Oncology Nursing Forum, 31(5), E99–E115.

    Article  PubMed  Google Scholar 

  220. Bak, M. J., et al. (2016). Role of dietary bioactive natural products in estrogen receptor-positive breast cancer. Seminars in Cancer Biology, 40-41, 170–191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Afrin, S., et al. (2016). Promising health benefits of the strawberry: A focus on clinical studies. Journal of Agricultural and Food Chemistry, 64(22), 4435–4449.

    Article  CAS  PubMed  Google Scholar 

  222. Basu, A., et al. (2016). Effects of dietary strawberry supplementation on antioxidant biomarkers in obese adults with above optimal serum lipids. Journal of Nutrition and Metabolism, 2016, 3910630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Giampieri, F., et al. (2015). Strawberry as a health promoter: An evidence based review. Food & Function, 6(5), 1386–1398.

    Article  CAS  Google Scholar 

  224. Giampieri, F., Alvarez-Suarez, J. M., & Battino, M. (2014). Strawberry and human health: Effects beyond antioxidant activity. Journal of Agricultural and Food Chemistry, 62(18), 3867–3876.

    Article  CAS  PubMed  Google Scholar 

  225. Basu, A., et al. (2014). Strawberry as a functional food: An evidence-based review. Critical Reviews in Food Science and Nutrition, 54(6), 790–806.

    Article  CAS  PubMed  Google Scholar 

  226. Ariza, M. T., et al. (2016). Strawberry achenes are an important source of bioactive compounds for human health. International Journal of Molecular Sciences, 17(7), 1103.

    Article  CAS  PubMed Central  Google Scholar 

  227. Giampieri, F., et al. (2017). The healthy effects of strawberry bioactive compounds on molecular pathways related to chronic diseases. Annals of the New York Academy of Sciences, 1398(1), 62–71.

    Article  CAS  PubMed  Google Scholar 

  228. Rahal, A., et al. (2014). Oxidative stress, prooxidants, and antioxidants: The interplay. BioMed Research International, 2014, 761264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Edirisinghe, I., et al. (2011). Strawberry anthocyanin and its association with postprandial inflammation and insulin. British Journal of Nutrition, 106(6), 913–922.

    Article  CAS  Google Scholar 

  230. Meyers, K. J., et al. (2003). Antioxidant and antiproliferative activities of strawberries. Journal of Agricultural and Food Chemistry, 51(23), 6887–6892.

    Article  CAS  PubMed  Google Scholar 

  231. Cooke, D., et al. (2005). Anthocyans from fruits and vegetables--does bright colour signal cancer chemopreventive activity? European Journal of Cancer, 41(13), 1931–1940.

    Article  CAS  PubMed  Google Scholar 

  232. Wedge, D. E., et al. (2001). Anticarcinogenic activity of strawberry, blueberry, and raspberry extracts to breast and cervical cancer cells. Journal of Medicinal Food, 4(1), 49–51.

    Article  PubMed  Google Scholar 

  233. Somasagara, R. R., et al. (2012). Extracts of strawberry fruits induce intrinsic pathway of apoptosis in breast cancer cells and inhibits tumor progression in mice. PLoS One, 7(10), e47021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Islam, M. S., et al. (2017). An anthocyanin rich strawberry extract induces apoptosis and ROS while decreases glycolysis and fibrosis in human uterine leiomyoma cells. Oncotarget, 8(14), 23575–23587.

    Article  PubMed  PubMed Central  Google Scholar 

  235. Amatori, S., et al. (2016). Polyphenol-rich strawberry extract (PRSE) shows in vitro and in vivo biological activity against invasive breast cancer cells. Scientific Reports, 6, 30917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Flores, G., & Ruiz Del Castillo, M. L. (2016). Cancer-related constituents of strawberry jam as compared with fresh fruit. Cancers (Basel), 8(1), 16.

    Article  CAS  Google Scholar 

  237. Casto, B. C., et al. (2013). Chemoprevention of oral cancer by lyophilized strawberries. Anticancer Research, 33(11), 4757–4766.

    PubMed  PubMed Central  Google Scholar 

  238. Spagnuolo, C., et al. (2016). A phenolic extract obtained from methyl jasmonate-treated strawberries enhances apoptosis in a human cervical cancer cell line. Nutrition and Cancer, 68(7), 1140–1150.

    Article  CAS  PubMed  Google Scholar 

  239. Cho, H. J., & Park, J. H. (2013). Kaempferol induces cell cycle arrest in HT-29 human colon cancer cells. Journal of Cancer Prevention, 18(3), 257–263.

    Article  PubMed  PubMed Central  Google Scholar 

  240. Kimira, M., et al. (1998). Japanese intake of flavonoids and isoflavonoids from foods. Journal of Epidemiology, 8(3), 168–175.

    Article  CAS  PubMed  Google Scholar 

  241. Adhami, V. M., et al. (2012). Dietary flavonoid fisetin: A novel dual inhibitor of PI3K/Akt and mTOR for prostate cancer management. Biochemical Pharmacology, 84(10), 1277–1281.

    Article  CAS  PubMed  Google Scholar 

  242. Li, J., et al. (2018). Fisetin inhibited growth and metastasis of triple-negative breast cancer by reversing epithelial-to-mesenchymal transition via PTEN/Akt/GSK3beta signal pathway. Frontiers in Pharmacology, 9, 772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Youns, M., & Hegazy, W. A. H. (2017). The natural flavonoid fisetin inhibits cellular proliferation of hepatic, colorectal, and pancreatic cancer cells through modulation of multiple signaling pathways. PLoS One, 12(1), e0169335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Khan, N., et al. (2013). Fisetin: A dietary antioxidant for health promotion. Antioxidants & Redox Signaling, 19(2), 151–162.

    Article  CAS  Google Scholar 

  245. Maher, P. (2015). How fisetin reduces the impact of age and disease on CNS function. Frontiers in Bioscience (Scholar Edition), 7, 58–82.

    Article  Google Scholar 

  246. Yousefzadeh, M. J., et al. (2018). Fisetin is a senotherapeutic that extends health and lifespan. eBioMedicine, 36, 18–28.

    Article  PubMed  PubMed Central  Google Scholar 

  247. Basu, A., et al. (2014). Freeze-dried strawberries lower serum cholesterol and lipid peroxidation in adults with abdominal adiposity and elevated serum lipids. The Journal of Nutrition, 144(6), 830–837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Basu, A., et al. (2010). Strawberries decrease atherosclerotic markers in subjects with metabolic syndrome. Nutrition Research, 30(7), 462–469.

    Article  CAS  PubMed  Google Scholar 

  249. Ellis, C. L., et al. (2011). Attenuation of meal-induced inflammatory and thrombotic responses in overweight men and women after 6-week daily strawberry (Fragaria) intake. A randomized placebo-controlled trial. Journal of Atherosclerosis and Thrombosis, 18(4), 318–327.

    Article  CAS  PubMed  Google Scholar 

  250. Burton-Freeman, B., et al. (2010). Strawberry modulates LDL oxidation and postprandial lipemia in response to high-fat meal in overweight hyperlipidemic men and women. Journal of the American College of Nutrition, 29(1), 46–54.

    Article  CAS  PubMed  Google Scholar 

  251. Basu, A., et al. (2009). Freeze-dried strawberry powder improves lipid profile and lipid peroxidation in women with metabolic syndrome: Baseline and post intervention effects. Nutrition Journal, 8, 43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Jenkins, D. J., et al. (2008). The effect of strawberries in a cholesterol-lowering dietary portfolio. Metabolism, 57(12), 1636–1644.

    Article  CAS  PubMed  Google Scholar 

  253. Cassidy, A., et al. (2013). High anthocyanin intake is associated with a reduced risk of myocardial infarction in young and middle-aged women. Circulation, 127(2), 188–196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Hung, C. H., et al. (2015). Quercetin is a potent anti-atherosclerotic compound by activation of SIRT1 signaling under oxLDL stimulation. Molecular Nutrition & Food Research, 59(10), 1905–1917.

    Article  CAS  Google Scholar 

  255. Kolte, D., et al. (2014). Role of magnesium in cardiovascular diseases. Cardiology in Review, 22(4), 182–192.

    Article  PubMed  Google Scholar 

  256. Baranowska, M., et al. (2007). Potassium channels in blood vessels: Their role in health and disease. Postȩpy Higieny i Medycyny Doświadczalnej (Online), 61, 596–605.

    Google Scholar 

  257. Harrison, F. E. (2012). A critical review of vitamin C for the prevention of age-related cognitive decline and Alzheimer’s disease. Journal of Alzheimer’s Disease, 29(4), 711–726.

    Article  CAS  PubMed  Google Scholar 

  258. Del, C. V. H. M., et al. (2017). Dietary iodine exposure and brain structures and cognition in older people. Exploratory analysis in the Lothian Birth Cohort 1936. The Journal of Nutrition, Health and Aging, 21(9), 971–979.

    Article  CAS  Google Scholar 

  259. Koide, M., et al. (2018). The yin and yang of KV channels in cerebral small vessel pathologie. Microcirculation, 25(1), e12436.

    Article  CAS  Google Scholar 

  260. Joseph, J. A., et al. (1999). Reversals of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation. Journal of Neuroscience, 19(18), 8114–8121.

    Article  CAS  PubMed  Google Scholar 

  261. Currais, A., et al. (2018). Fisetin reduces the impact of aging on behavior and physiology in the rapidly aging SAMP8 mouse. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 73(3), 299–307.

    Article  CAS  PubMed  Google Scholar 

  262. Gasparrini, M., et al. (2017). Strawberry-based cosmetic formulations protect human dermal fibroblasts against UVA-induced damage. Nutrients, 9(6), 605.

    Article  CAS  PubMed Central  Google Scholar 

  263. Ibranji, A., et al. (2015). A case report on transitory histamine intolerance from strawberry intake in a 15 month old child with acute gastroenteritis. Clinical and Translational Allergy, 5(Suppl 3), P61.

    Article  PubMed Central  Google Scholar 

  264. Peng, C., et al. (2014). Biology of ageing and role of dietary antioxidants. BioMed Research International, 2014, 13.

    Google Scholar 

  265. Wu, X., et al. (2004). Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. Journal of Agricultural and Food Chemistry, 52(12), 4026–4037.

    Article  CAS  PubMed  Google Scholar 

  266. Torri, E., et al. (2007). Anti-inflammatory and antinociceptive properties of blueberry extract (Vaccinium corymbosum). Journal of Pharmacy and Pharmacology, 59(4), 591–596.

    Article  CAS  PubMed  Google Scholar 

  267. Wilms, L. C., et al. (2007). Impact of multiple genetic polymorphisms on effects of a 4-week blueberry juice intervention on ex vivo induced lymphocytic DNA damage in human volunteers. Carcinogenesis, 28(8), 1800–1806.

    Article  CAS  PubMed  Google Scholar 

  268. Del Bo, C., et al. (2013). A single portion of blueberry (Vaccinium corymbosum L) improves protection against DNA damage but not vascular function in healthy male volunteers. Nutrition Research, 33(3), 220–227.

    Article  CAS  PubMed  Google Scholar 

  269. Rodriguez-Mateos, A., et al. (2012). Procyanidin, anthocyanin, and chlorogenic acid contents of highbush and lowbush blueberries. Journal of Agricultural and Food Chemistry, 60(23), 5772–5778.

    Article  CAS  PubMed  Google Scholar 

  270. Mazza, G., et al. (2002). Absorption of anthocyanins from blueberries and serum antioxidant status in human subjects. Journal of Agricultural and Food Chemistry, 50(26), 7731–7737.

    Article  CAS  PubMed  Google Scholar 

  271. Kay, C. D., & Holub, B. J. (2002). The effect of wild blueberry (Vaccinium angustifolium) consumption on postprandial serum antioxidant status in human subjects. British Journal of Nutrition, 88(4), 389–398.

    Article  CAS  Google Scholar 

  272. Tsuda, H., et al. (2013). Antioxidant activities and anti-cancer cell proliferation properties of Natsuhaze (Vaccinium oldhamii Miq.), Shashanbo (V. bracteatum Thunb.) and blueberry cultivars. Plants (Basel), 2(1), 57–71.

    Article  CAS  Google Scholar 

  273. Johnson, S. A., & Arjmandi, B. H. (2013). Evidence for anti-cancer properties of blueberries: A mini-review. Anti-Cancer Agents in Medicinal Chemistry, 13(8), 1142–1148.

    Article  CAS  PubMed  Google Scholar 

  274. De Bont, R., & van Larebeke, N. (2004). Endogenous DNA damage in humans: A review of quantitative data. Mutagenesis, 19(3), 169–185.

    Article  PubMed  Google Scholar 

  275. Aiyer, H. S., Srinivasan, C., & Gupta, R. C. (2008). Dietary berries and ellagic acid diminish estrogen-mediated mammary tumorigenesis in ACI rats. Nutrition and Cancer, 60(2), 227–234.

    Article  PubMed  Google Scholar 

  276. Faria, A., et al. (2010). Blueberry anthocyanins and pyruvic acid adducts: Anticancer properties in breast cancer cell lines. Phytotherapy Research, 24(12), 1862–1869.

    Article  CAS  PubMed  Google Scholar 

  277. Jeyabalan, J., et al. (2014). Chemopreventive and therapeutic activity of dietary blueberry against estrogen-mediated breast cancer. Journal of Agricultural and Food Chemistry, 62(18), 3963–3971.

    Article  CAS  PubMed  Google Scholar 

  278. Adams, L. S., et al. (2011). Whole blueberry powder modulates the growth and metastasis of MDA-MB-231 triple negative breast tumors in nude mice. The Journal of Nutrition, 141(10), 1805–1812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Simmen, F. A., et al. (2009). Lack of efficacy of blueberry in nutritional prevention of azoxymethane-initiated cancers of rat small intestine and colon. BMC Gastroenterology, 9, 67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Tolba, M. F., & Abdel-Rahman, S. Z. (2015). Pterostilbine, an active component of blueberries, sensitizes colon cancer cells to 5-fluorouracil cytotoxicity. Scientific Reports, 5, 15239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Wang, E., et al. (2017). Antiproliferative and proapoptotic activities of anthocyanin and anthocyanidin extracts from blueberry fruits on B16-F10 melanoma cells. Food & Nutrition Research, 61(1), 1325308.

    Article  CAS  Google Scholar 

  282. Adom, K. K., & Liu, R. H. (2002). Antioxidant activity of grains. Journal of Agricultural and Food Chemistry, 50(21), 6182–6187.

    Article  CAS  PubMed  Google Scholar 

  283. Khurana, S., et al. (2013). Polyphenols: Benefits to the cardiovascular system in health and in aging. Nutrients, 5(10), 3779–3827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Blacker, B. C., et al. (2013). Consumption of blueberries with a high-carbohydrate, low-fat breakfast decreases postprandial serum markers of oxidation. British Journal of Nutrition, 109(9), 1670–1677.

    Article  CAS  Google Scholar 

  285. Riso, P., et al. (2013). Effect of a wild blueberry (Vaccinium angustifolium) drink intervention on markers of oxidative stress, inflammation and endothelial function in humans with cardiovascular risk factors. European Journal of Nutrition, 52(3), 949–961.

    Article  CAS  PubMed  Google Scholar 

  286. Basu, A., et al. (2010). Blueberries decrease cardiovascular risk factors in obese men and women with metabolic syndrome. The Journal of Nutrition, 140(9), 1582–1587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Johnson, S. A., et al. (2015). Daily blueberry consumption improves blood pressure and arterial stiffness in postmenopausal women with pre- and stage 1-hypertension: A randomized, double-blind, placebo-controlled clinical trial. Journal of the Academy of Nutrition and Dietetics, 115(3), 369–377.

    Article  PubMed  Google Scholar 

  288. McAnulty, L. S., et al. (2014). Six weeks daily ingestion of whole blueberry powder increases natural killer cell counts and reduces arterial stiffness in sedentary males and females. Nutrition Research, 34(7), 577–584.

    Article  CAS  PubMed  Google Scholar 

  289. Muraki, I., et al. (2013). Fruit consumption and risk of type 2 diabetes: Results from three prospective longitudinal cohort studies. BMJ, 347, f5001.

    Article  PubMed  PubMed Central  Google Scholar 

  290. Stull, A. J., et al. (2010). Bioactives in blueberries improve insulin sensitivity in obese, insulin-resistant men and women. The Journal of Nutrition, 140(10), 1764–1768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Abidov, M., et al. (2006). Effect of Blueberin on fasting glucose, C-reactive protein and plasma aminotransferases, in female volunteers with diabetes type 2: Double-blind, placebo controlled clinical study. Georgian Medical News, 141, 66–72.

    Google Scholar 

  292. Martineau, L. C., et al. (2006). Anti-diabetic properties of the Canadian lowbush blueberry Vaccinium angustifolium Ait. Phytomedicine, 13(9-10), 612–623.

    Article  CAS  PubMed  Google Scholar 

  293. Torronen, R., et al. (2013). Berries reduce postprandial insulin responses to wheat and rye breads in healthy women. The Journal of Nutrition, 143(4), 430–436.

    Article  CAS  PubMed  Google Scholar 

  294. Wu, T., et al. (2013). Blueberry and mulberry juice prevent obesity development in C57BL/6 mice. PLoS One, 8(10), e77585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Seymour, E. M., et al. (2011). Blueberry intake alters skeletal muscle and adipose tissue peroxisome proliferator-activated receptor activity and reduces insulin resistance in obese rats. Journal of Medicinal Food, 14(12), 1511–1518.

    Article  CAS  PubMed  Google Scholar 

  296. Giacalone, M., et al. (2011). Antioxidant and neuroprotective properties of blueberry polyphenols: A critical review. Nutritional Neuroscience, 14(3), 119–125.

    Article  CAS  PubMed  Google Scholar 

  297. Krikorian, R., et al. (2010). Blueberry supplementation improves memory in older adults. Journal of Agricultural and Food Chemistry, 58(7), 3996–4000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Traupe, I., et al. (2018). Postoperative cognitive dysfunction and short-term neuroprotection from blueberries: A pilot study. Minerva Anestesiologica, 84(12), 1352–1360.

    Article  PubMed  Google Scholar 

  299. Boespflug, E. L., et al. (2018). Enhanced neural activation with blueberry supplementation in mild cognitive impairment. Nutritional Neuroscience, 21(4), 297–305.

    Article  CAS  PubMed  Google Scholar 

  300. Whyte, A. R., Schafer, G., & Williams, C. M. (2016). Cognitive effects following acute wild blueberry supplementation in 7- to 10-year-old children. European Journal of Nutrition, 55(6), 2151–2162.

    Article  CAS  PubMed  Google Scholar 

  301. Haskell, C. F., et al. (2010). Effects of a multi-vitamin/mineral supplement on cognitive function and fatigue during extended multi-tasking. Human Psychopharmacology: Clinical and Experimental, 25(6), 448–461.

    Article  CAS  Google Scholar 

  302. Dutot, M., et al. (2008). Oxidative stress modulation using polyphenol-rich blueberries: Application on a human retinal cell model. Journal Francais D’ophtalmologie, 31(10), 975–980.

    Article  CAS  PubMed  Google Scholar 

  303. Jepson, R. G., & Craig, J. C. (2007). A systematic review of the evidence for cranberries and blueberries in UTI prevention. Molecular Nutrition & Food Research, 51(6), 738–745.

    Article  CAS  Google Scholar 

  304. Ofek, I., et al. (1991). Anti-Escherichia coli adhesin activity of cranberry and blueberry juices. The New England Journal of Medicine, 324(22), 1599.

    CAS  PubMed  Google Scholar 

  305. Moriwaki, S., et al. (2014). Delphinidin, one of the major anthocyanidins, prevents bone loss through the inhibition of excessive osteoclastogenesis in osteoporosis model mice. PLoS One, 9(5), e97177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Palacios, C. (2006). The role of nutrients in bone health, from A to Z. Critical Reviews in Food Science and Nutrition, 46(8), 621–628.

    Article  CAS  PubMed  Google Scholar 

  307. Charge, S. B., & Rudnicki, M. A. (2004). Cellular and molecular regulation of muscle regeneration. Physiological Reviews, 84(1), 209–238.

    Article  CAS  PubMed  Google Scholar 

  308. Park, C. H., et al. (2018). Assessing the values of blueberries intake on exercise performance, TAS, and inflammatory factors. Iranian Journal of Public Health, 47(Suppl 1), 27–32.

    PubMed  PubMed Central  Google Scholar 

  309. Ives, S. J., et al. (2017). Effects of a combined protein and antioxidant supplement on recovery of muscle function and soreness following eccentric exercise. Journal of the International Society of Sports Nutrition, 14, 21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. McLeay, Y., et al. (2012). Effect of New Zealand blueberry consumption on recovery from eccentric exercise-induced muscle damage. Journal of the International Society of Sports Nutrition, 9(1), 19.

    Article  PubMed  PubMed Central  Google Scholar 

  311. Zhang, H., et al. (2018). Effects of mulberry fruit (Morus alba L.) consumption on health outcomes: A mini-review. Antioxidants (Basel), 7(5), 69.

    Article  CAS  Google Scholar 

  312. Yuan, Q., & Zhao, L. (2017). The mulberry (Morus alba L.) fruit-a review of characteristic components and health benefits. Journal of Agricultural and Food Chemistry, 65(48), 10383–10394.

    Article  CAS  PubMed  Google Scholar 

  313. Liang, L., et al. (2012). Chemical composition, nutritional value, and antioxidant activities of eight mulberry cultivars from China. Pharmacognosy Magazine, 8(31), 215–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Yan, F., et al. (2017). Mulberry anthocyanin extract ameliorates oxidative damage in HepG2 cells and prolongs the lifespan of caenorhabditis elegans through MAPK and Nrf2 pathways. Oxidative Medicine and Cellular Longevity, 2017, 7956158.

    PubMed  PubMed Central  Google Scholar 

  315. Ge, Q., et al. (2018). Analysis of mulberry leaf components in the treatment of diabetes using network pharmacology. European Journal of Pharmacology, 833, 50–62.

    Article  CAS  PubMed  Google Scholar 

  316. Liu, L. K., et al. (2008). Mulberry anthocyanin extracts inhibit LDL oxidation and macrophage-derived foam cell formation induced by oxidative LDL. Journal of Food Science, 73(6), H113–H121.

    Article  CAS  PubMed  Google Scholar 

  317. Jiang, Y., et al. (2017). Effects of the ethanol extract of black mulberry (Morus nigra L.) fruit on experimental atherosclerosis in rats. Journal of Ethnopharmacology, 200, 228–235.

    Article  CAS  PubMed  Google Scholar 

  318. Thaipitakwong, T., Numhom, S., & Aramwit, P. (2018). Mulberry leaves and their potential effects against cardiometabolic risks: A review of chemical compositions, biological properties and clinical efficacy. Pharmaceutical Biology, 56(1), 109–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Kojima, Y., et al. (2010). Effects of mulberry leaf extract rich in 1-deoxynojirimycin on blood lipid profiles in humans. Journal of Clinical Biochemistry and Nutrition, 47(2), 155–161.

    Article  PubMed  PubMed Central  Google Scholar 

  320. Huang, H. P., Ou, T. T., & Wang, C. J. (2013). Mulberry (sang shen zi) and its bioactive compounds, the chemoprevention effects and molecular mechanisms in vitro and in vivo. Journal of Traditional and Complementary Medicine, 3(1), 7–15.

    Article  PubMed  PubMed Central  Google Scholar 

  321. Cho, E., et al. (2017). Anti-cancer effect of cyanidin-3-glucoside from mulberry via caspase-3 cleavage and DNA fragmentation in vitro and in vivo. Anti-Cancer Agents in Medicinal Chemistry, 17(11), 1519–1525.

    Article  CAS  PubMed  Google Scholar 

  322. Chen, P. N., et al. (2006). Mulberry anthocyanins, cyanidin 3-rutinoside and cyanidin 3-glucoside, exhibited an inhibitory effect on the migration and invasion of a human lung cancer cell line. Cancer Letters, 235(2), 248–259.

    Article  CAS  PubMed  Google Scholar 

  323. Long, H. L., et al. (2018). Mulberry anthocyanins improves thyroid cancer progression mainly by inducing apoptosis and autophagy cell death. The Kaohsiung Journal of Medical Sciences, 34(5), 255–262.

    Article  PubMed  Google Scholar 

  324. Azzini, E., Giacometti, J., & Russo, G. L. (2017). Antiobesity effects of anthocyanins in preclinical and clinical studies. Oxidative Medicine and Cellular Longevity, 2017, 2740364.

    PubMed  PubMed Central  Google Scholar 

  325. Lown, M., et al. (2017). Mulberry-extract improves glucose tolerance and decreases insulin concentrations in normoglycaemic adults: Results of a randomised double-blind placebo-controlled study. PLoS One, 12(2), e0172239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. Sarikaphuti, A., et al. (2013). Preventive effects of Morus alba L. anthocyanins on diabetes in Zucker diabetic fatty rats. Experimental and Therapeutic Medicine, 6(3), 689–695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Belwal, T., et al. (2017). Dietary anthocyanins and insulin resistance: When food becomes a medicine. Nutrients, 9(10), 1111.

    Article  CAS  PubMed Central  Google Scholar 

  328. Li, Y. G., et al. (2011). Hybrid of 1-deoxynojirimycin and polysaccharide from mulberry leaves treat diabetes mellitus by activating PDX-1/insulin-1 signaling pathway and regulating the expression of glucokinase, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase in alloxan-induced diabetic mice. Journal of Ethnopharmacology, 134(3), 961–970.

    Article  CAS  PubMed  Google Scholar 

  329. Riche, D. M., et al. (2017). Impact of mulberry leaf extract on type 2 diabetes (Mul-DM): A randomized, placebo-controlled pilot study. Complementary Therapies in Medicine, 32, 105–108.

    Article  PubMed  Google Scholar 

  330. Banu, S., et al. (2015). Reduction of post-prandial hyperglycemia by mulberry tea in type-2 diabetes patients. Saudi Journal of Biological Sciences, 22(1), 32–36.

    Article  CAS  PubMed  Google Scholar 

  331. Stefanut, M. N., et al. (2013). Anti-hyperglycemic effect of bilberry, blackberry and mulberry ultrasonic extracts on diabetic rats. Plant Foods for Human Nutrition, 68(4), 378–384.

    Article  CAS  PubMed  Google Scholar 

  332. Eo, H. J., et al. (2014). Anti-inflammatory and anti-cancer activity of mulberry (Morus alba L.) root bark. BMC Complementary and Alternative Medicine, 14, 200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Poschner, S., et al. (2018). Resveratrol inhibits key steps of steroid metabolism in a human estrogen-receptor positive breast cancer model: Impact on cellular proliferation. Frontiers in Pharmacology, 9, 742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. Sheth, S., et al. (2012). Resveratrol reduces prostate cancer growth and metastasis by inhibiting the Akt/MicroRNA-21 pathway. PLoS One, 7(12), e51655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Shih, A., et al. (2002). Resveratrol induces apoptosis in thyroid cancer cell lines via a MAPK- and p53-dependent mechanism. The Journal of Clinical Endocrinology and Metabolism, 87(3), 1223–1232.

    Article  CAS  PubMed  Google Scholar 

  336. Yang, S., et al. (2015). Resveratrol elicits anti-colorectal cancer effect by activating miR-34c-KITLG in vitro and in vivo. BMC Cancer, 15, 969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Gülçin, I. (2010). Antioxidant properties of resveratrol: A structure-activity insight. Innovative Food Science & Emerging Technologies, 11, 210–218.

    Article  CAS  Google Scholar 

  338. Mozaffarieh, M., Sacu, S., & Wedrich, A. (2003). The role of the carotenoids, lutein and zeaxanthin, in protecting against age-related macular degeneration: A review based on controversial evidence. Nutrition Journal, 2, 20.

    Article  PubMed  PubMed Central  Google Scholar 

  339. Kaewkaen, P., et al. (2012). Mulberry fruit extract protects against memory impairment and hippocampal damage in animal model of vascular dementia. Evidence-Based Complementary and Alternative Medicine, 2012, 263520.

    Article  PubMed  PubMed Central  Google Scholar 

  340. Swaminathan, A., & Jicha, G. A. (2014). Nutrition and prevention of Alzheimer’s dementia. Frontiers in Aging Neuroscience, 6, 282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. Lee, D., et al. (2018). Beneficial effects of bioactive compounds in mulberry fruits against cisplatin-induced nephrotoxicity. International Journal of Molecular Sciences, 19(4), 1117.

    Article  CAS  PubMed Central  Google Scholar 

  342. Faye, O., et al. (2018). Squamous cell carcinoma associated with use of skin-lightening cream. Annales de Dermatologie et de Vénéréologie, 145(2), 100–103.

    Article  CAS  PubMed  Google Scholar 

  343. Pillaiyar, T., Manickam, M., & Namasivayam, V. (2017). Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 32(1), 403–425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  344. Kirakosyan, A., et al. (2009). Chemical profile and antioxidant capacities of tart cherry products. Food Chemistry, 115, 20–25.

    Article  CAS  Google Scholar 

  345. Chaovanalikit, A., & Wrolstad, R. E. (2004). Anthocyanin and polyphenolic composition of fresh and processed cherries. Journal of Food Science, 69(1), FCT73.

    CAS  Google Scholar 

  346. Carlsen, M. H., et al. (2010). The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutrition Journal, 9(1), 3.

    Article  PubMed  PubMed Central  Google Scholar 

  347. Dimitriou, L., et al. (2015). Influence of a montmorency cherry juice blend on indices of exercise-induced stress and upper respiratory tract symptoms following marathon running—a pilot investigation. Journal of the International Society of Sports Nutrition, 12(1), 22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  348. Kang, S. Y., et al. (2003). Tart cherry anthocyanins inhibit tumor development in Apc(Min) mice and reduce proliferation of human colon cancer cells. Cancer Letters, 194(1), 13–19.

    Article  CAS  PubMed  Google Scholar 

  349. Kirakosyan, A., et al. (2018). The inhibitory potential of Montmorency tart cherry on key enzymes relevant to type 2 diabetes and cardiovascular disease. Food Chemistry, 252, 142–146.

    Article  CAS  PubMed  Google Scholar 

  350. Tjelle, T. E., et al. (2015). Polyphenol-rich juices reduce blood pressure measures in a randomised controlled trial in high normal and hypertensive volunteers. British Journal of Nutrition, 114(7), 1054–1063.

    Article  CAS  Google Scholar 

  351. Kent, K., et al. (2016). Acute reduction in blood pressure following consumption of anthocyanin-rich cherry juice may be dose-interval dependant: A pilot cross-over study. International Journal of Food Sciences and Nutrition, 67(1), 47–52.

    Article  CAS  PubMed  Google Scholar 

  352. Wang, H., et al. (1999). Antioxidant and antiinflammatory activities of anthocyanins and their aglycon, cyanidin, from tart cherries. Journal of Natural Products, 62(2), 294–296.

    Article  CAS  PubMed  Google Scholar 

  353. Kelley, D. S., Adkins, Y., & Laugero, K. D. (2018). A review of the health benefits of cherries. Nutrients, 10(3), 368.

    Article  CAS  PubMed Central  Google Scholar 

  354. Min, J., et al. (2011). Neuroprotective effect of cyanidin-3-O-glucoside anthocyanin in mice with focal cerebral ischemia. Neuroscience Letters, 500(3), 157–161.

    Article  CAS  PubMed  Google Scholar 

  355. Kent, K., et al. (2017). Consumption of anthocyanin-rich cherry juice for 12 weeks improves memory and cognition in older adults with mild-to-moderate dementia. European Journal of Nutrition, 56(1), 333–341.

    Article  CAS  PubMed  Google Scholar 

  356. Traustadottir, T., et al. (2009). Tart cherry juice decreases oxidative stress in healthy older men and women. The Journal of Nutrition, 139(10), 1896–1900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  357. Kim, D. O., et al. (2005). Sweet and sour cherry phenolics and their protective effects on neuronal cells. Journal of Agricultural and Food Chemistry, 53(26), 9921–9927.

    Article  CAS  PubMed  Google Scholar 

  358. Jacob, R. A., et al. (2003). Consumption of cherries lowers plasma urate in healthy women. The Journal of Nutrition, 133(6), 1826–1829.

    Article  CAS  PubMed  Google Scholar 

  359. Schumacher, H. R., et al. (2013). Randomized double-blind crossover study of the efficacy of a tart cherry juice blend in treatment of osteoarthritis (OA) of the knee. Osteoarthritis and Cartilage, 21(8), 1035–1041.

    Article  CAS  PubMed  Google Scholar 

  360. Kuehl, K., et al. (2012). Efficacy of Tart Cherry Juice to Reduce Inflammation Biomarkers among Women with Inflammatory Osteoarthritis (OA). Journal of Food Studies, 1, 14–25.

    Article  Google Scholar 

  361. Zhang, Y., et al. (2012). Cherry consumption and decreased risk of recurrent gout attacks. Arthritis and Rheumatism, 64(12), 4004–4011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  362. Bell, P., et al. (2014). Montmorency tart cherry (Prunus cerasus L.) concentrate lowers uric acid, independent of plasma cyanidin-3-O-glucosiderutinoside. Journal of Functional Foods, 11, 82–90.

    Article  CAS  Google Scholar 

  363. Carson, C. A. (2015). Tart cherry juice as a treatment for peripheral neuropathy. Integrative Medicine: A Clinician’s Journal, 14(1), 48–49.

    Google Scholar 

  364. Kuehl, K. S., et al. (2010). Efficacy of tart cherry juice in reducing muscle pain during running: A randomized controlled trial. Journal of the International Society of Sports Nutrition, 7, 17.

    Article  PubMed  PubMed Central  Google Scholar 

  365. Howatson, G., et al. (2010). Influence of tart cherry juice on indices of recovery following marathon running. Scandinavian Journal of Medicine & Science in Sports, 20(6), 843–852.

    Article  CAS  Google Scholar 

  366. Seymour, E. M., et al. (2009). Regular tart cherry intake alters abdominal adiposity, adipose gene transcription, and inflammation in obesity-prone rats fed a high fat diet. Journal of Medicinal Food, 12(5), 935–942.

    Article  CAS  PubMed  Google Scholar 

  367. Liu, A., et al. (2014). Tart cherry juice increases sleep time in older adults with insomnia (830.9). The FASEB Journal, 28(1_supplement), 830–839.

    Google Scholar 

  368. Pigeon, W. R., et al. (2010). Effects of a tart cherry juice beverage on the sleep of older adults with insomnia: A pilot study. Journal of Medicinal Food, 13(3), 579–583.

    Article  PubMed  PubMed Central  Google Scholar 

  369. Deli, J., et al. (2001). Carotenoid composition in the fruits of red paprika (Capsicum annuum var. lycopersiciforme rubrum) during ripening; biosynthesis of carotenoids in red paprika. Journal of Agricultural and Food Chemistry, 49(3), 1517–1523.

    Article  CAS  PubMed  Google Scholar 

  370. Gomez-Garcia Mdel, R., & Ochoa-Alejo, N. (2013). Biochemistry and molecular biology of carotenoid biosynthesis in chili peppers (Capsicum spp.). International Journal of Molecular Sciences, 14(9), 19025–19053.

    Article  CAS  PubMed  Google Scholar 

  371. Kim, S., Ha, T. Y., & Kyeong Hwang, I. (2009). Analysis, bioavailability, and potential healthy effects of capsanthin, natural red pigment from Capsicum spp. Food Reviews International, 25, 198–213.

    Article  CAS  Google Scholar 

  372. Arimboor, R., et al. (2015). Red pepper (Capsicum annuum) carotenoids as a source of natural food colors: Analysis and stability-a review. Journal of Food Science and Technology, 52(3), 1258–1271.

    Article  CAS  PubMed  Google Scholar 

  373. Rodriguez-Burruezo, A., Gonzalez-Mas Mdel, C., & Nuez, F. (2010). Carotenoid composition and vitamin A value in aji (Capsicum baccatum L.) and rocoto (C. pubescens R. & P.), 2 pepper species from the Andean region. Journal of Food Science, 75(8), S446–S453.

    Article  CAS  PubMed  Google Scholar 

  374. Guzman, I., et al. (2010). Variability of carotenoid biosynthesis in orange colored Capsicum spp. Plant Science, 179(1-2), 49–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  375. Sommerburg, O., et al. (1998). Fruits and vegetables that are sources for lutein and zeaxanthin: The macular pigment in human eyes. British Journal of Ophthalmology, 82(8), 907–910.

    Article  CAS  Google Scholar 

  376. Hornero-Mendez, D., Gomez-Ladron De Guevara, R., & Minguez-Mosquera, M. I. (2000). Carotenoid biosynthesis changes in five red pepper (Capsicum annuum L.) cultivars during ripening. Cultivar selection for breeding. Journal of Agricultural and Food Chemistry, 48(9), 3857–3864.

    Article  CAS  PubMed  Google Scholar 

  377. Materska, M., et al. (2003). Isolation and structure elucidation of flavonoid and phenolic acid glycosides from pericarp of hot pepper fruit Capsicum annuum L. Phytochemistry, 63(8), 893–898.

    Article  CAS  PubMed  Google Scholar 

  378. Materska, M., & Perucka, I. (2005). Antioxidant activity of the main phenolic compounds isolated from hot pepper fruit (Capsicum annuum L). Journal of Agricultural and Food Chemistry, 53(5), 1750–1756.

    Article  CAS  PubMed  Google Scholar 

  379. Srinivasan, K. (2016). Biological activities of red pepper (Capsicum annuum) and its pungent principle capsaicin: A review. Critical Reviews in Food Science and Nutrition, 56(9), 1488–1500.

    Article  CAS  PubMed  Google Scholar 

  380. Fernandes, E. S., et al. (2016). Capsaicin and its role in chronic diseases. Advances in Experimental Medicine and Biology, 929, 91–125.

    Article  CAS  PubMed  Google Scholar 

  381. Gottardi, D., et al. (2016). Beneficial effects of spices in food preservation and safety. Frontiers in Microbiology, 7, 1394.

    Article  PubMed  PubMed Central  Google Scholar 

  382. O’Neill, J., et al. (2012). Unravelling the mystery of capsaicin: A tool to understand and treat pain. Pharmacological Reviews, 64(4), 939–971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  383. Anand, P., & Bley, K. (2011). Topical capsaicin for pain management: Therapeutic potential and mechanisms of action of the new high-concentration capsaicin 8% patch. British Journal of Anaesthesia, 107(4), 490–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  384. Peppin, J. F., & Pappagallo, M. (2014). Capsaicinoids in the treatment of neuropathic pain: A review. Therapeutic Advances in Neurological Disorders, 7(1), 22–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  385. Evangelista, S. (2015). Novel therapeutics in the field of capsaicin and pain. Expert Review of Clinical Pharmacology, 8(4), 373–375.

    Article  CAS  PubMed  Google Scholar 

  386. Fattori, V., et al. (2016). Capsaicin: Current understanding of its mechanisms and therapy of pain and other pre-clinical and clinical uses. Molecules, 21(7), 844.

    Article  CAS  PubMed Central  Google Scholar 

  387. Chung, M. K., & Campbell, J. N. (2016). Use of capsaicin to treat pain: Mechanistic and therapeutic considerations. Pharmaceuticals (Basel), 9(4), 66.

    Article  CAS  Google Scholar 

  388. Sharma, S. K., Vij, A. S., & Sharma, M. (2013). Mechanisms and clinical uses of capsaicin. European Journal of Pharmacology, 720(1-3), 55–62.

    Article  CAS  PubMed  Google Scholar 

  389. Cianchetti, C. (2010). Capsaicin jelly against migraine pain. International Journal of Clinical Practice, 64(4), 457–459.

    Article  CAS  PubMed  Google Scholar 

  390. Benemei, S., et al. (2014). The TRPA1 channel in migraine mechanism and treatment. British Journal of Pharmacology, 171(10), 2552–2567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  391. Buntinx, L., Vermeersch, S., & de Hoon, J. (2015). Development of anti-migraine therapeutics using the capsaicin-induced dermal blood flow model. British Journal of Clinical Pharmacology, 80(5), 992–1000.

    Article  PubMed  PubMed Central  Google Scholar 

  392. Malhotra, R. (2016). Understanding migraine: Potential role of neurogenic inflammation. Annals of Indian Academy of Neurology, 19(2), 175–182.

    Article  PubMed  PubMed Central  Google Scholar 

  393. Karrer, T., & Bartoshuk, L. (1995). Effects of capsaicin desensitization on taste in humans. Physiology and Behavior, 57(3), 421–429.

    Article  CAS  PubMed  Google Scholar 

  394. Kim, C. S., et al. (2003). Capsaicin exhibits anti-inflammatory property by inhibiting IkB-a degradation in LPS-stimulated peritoneal macrophages. Cellular Signalling, 15(3), 299–306.

    Article  CAS  PubMed  Google Scholar 

  395. Jolayemi, A. T., & Ojewole, J. A. (2013). Comparative anti-inflammatory properties of Capsaicin and ethyl-aAcetate extract of Capsicum frutescens linn [Solanaceae] in rats. African Health Sciences, 13(2), 357–361.

    CAS  PubMed  PubMed Central  Google Scholar 

  396. Deal, C. L., et al. (1991). Treatment of arthritis with topical capsaicin: A double-blind trial. Clinical Therapeutics, 13(3), 383–395.

    CAS  PubMed  Google Scholar 

  397. Persson, M. S. M., et al. (2018). The relative efficacy of topical non-steroidal anti-inflammatory drugs and capsaicin in osteoarthritis: A network meta-analysis of randomised controlled trials. Osteoarthritis and Cartilage, 26(12), 1575–1582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  398. Guedes, V., Castro, J. P., & Brito, I. (2018). Topical capsaicin for pain in osteoarthritis: A literature review. Reumatología Clínica, 14(1), 40–45.

    Article  PubMed  Google Scholar 

  399. Laslett, L. L., & Jones, G. (2014). Capsaicin for osteoarthritis pain. Progress in Drug Research, 68, 277–291.

    CAS  PubMed  Google Scholar 

  400. Mason, L., et al. (2004). Systematic review of topical capsaicin for the treatment of chronic pain. BMJ, 328(7446), 991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  401. Simpson, D. M., et al. (2017). Capsaicin 8% patch in painful diabetic peripheral neuropathy: A randomized, double-blind, placebo-controlled study. The Journal of Pain, 18(1), 42–53.

    Article  CAS  PubMed  Google Scholar 

  402. Musharraf, M. U., Ahmad, Z., & Yaqub, Z. (2017). Comparison of topical capsaicin and topical turpentine Oil for treatment of painful diabetic neuropathy. Journal of Ayub Medical College, Abbottabad, 29(3), 384–387.

    PubMed  Google Scholar 

  403. Tandan, R., et al. (1992). Topical capsaicin in painful diabetic neuropathy. Effect on sensory function. Diabetes Care, 15(1), 15–18.

    Article  CAS  PubMed  Google Scholar 

  404. The Capsaicin Study Group. (1991). Treatment of painful diabetic neuropathy with topical capsaicin. A multicenter, double-blind, vehicle-controlled study. Archives of Internal Medicine, 151(11), 2225–2229.

    Article  Google Scholar 

  405. Meltzer, E. O., et al. (2010). Treatment of congestion in upper respiratory diseases. International Journal of General Medicine, 3, 69–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  406. Baraniuk, J. N. (2011). Subjective nasal fullness and objective congestion. Proceedings of the American Thoracic Society, 8(1), 62–69.

    Article  PubMed  PubMed Central  Google Scholar 

  407. Fokkens, W., Hellings, P., & Segboer, C. (2016). Capsaicin for rhinitis. Current Allergy and Asthma Reports, 16(8), 60–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  408. Gevorgyan, A., et al. (2015). Capsaicin for non-allergic rhinitis. Cochrane Database of Systematic Reviews, 7, 20150714.

    Google Scholar 

  409. Jones, N. L., Shabib, S., & Sherman, P. M. (1997). Capsaicin as an inhibitor of the growth of the gastric pathogen Helicobacter pylori. FEMS Microbiology Letters, 146(2), 223–227.

    Article  CAS  PubMed  Google Scholar 

  410. Lee, I. O., et al. (2007). Anti-inflammatory effect of capsaicin in Helicobacter pylori-infected gastric epithelial cells. Helicobacter, 12(5), 510–517.

    Article  CAS  PubMed  Google Scholar 

  411. Satyanarayana, M. N. (2006). Capsaicin and gastric ulcers. Critical Reviews in Food Science and Nutrition, 46(4), 275–328.

    Article  CAS  PubMed  Google Scholar 

  412. Toyoda, T., et al. (2016). Anti-inflammatory effects of capsaicin and piperine on helicobacter pylori-induced chronic gastritis in mongolian gerbils. Helicobacter, 21(2), 131–142.

    Article  CAS  PubMed  Google Scholar 

  413. Herrera-Lopez, J. A., et al. (2010). Capsaicin induction of esophageal symptoms in different phenotypes of gastroesophageal reflux disease. Revista de Gastroenterología de México, 75(4), 396–404.

    CAS  PubMed  Google Scholar 

  414. Yi, C. H., et al. (2016). Influence of capsaicin infusion on secondary peristalsis in patients with gastroesophageal reflux disease. World Journal of Gastroenterology, 22(45), 10045–10052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  415. Zheng, J., et al. (2017). Dietary capsaicin and its anti-obesity potency: From mechanism to clinical implications. Bioscience Reports, 37(3), BSR20170286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  416. Varghese, S., et al. (2017). Chili pepper as a body weight-loss food. International Journal of Food Sciences and Nutrition, 68(4), 392–401.

    Article  PubMed  Google Scholar 

  417. Narang, N., Jiraungkoorskul, W., & Jamrus, P. (2017). Current understanding of antiobesity property of capsaicin. Pharmacognosy Reviews, 11(21), 23–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  418. Leung, F. W. (2014). Capsaicin as an anti-obesity drug. Progress in Drug Research, 68, 171–179.

    CAS  PubMed  Google Scholar 

  419. Whiting, S., Derbyshire, E. J., & Tiwari, B. (2014). Could capsaicinoids help to support weight management? A systematic review and meta-analysis of energy intake data. Appetite, 73, 183–188.

    Article  CAS  PubMed  Google Scholar 

  420. McCarty, M. F., DiNicolantonio, J. J., & O’Keefe, J. H. (2015). Capsaicin may have important potential for promoting vascular and metabolic health. Open Heart, 2(1), e000262.

    Article  PubMed  PubMed Central  Google Scholar 

  421. Westerterp-Plantenga, M. S., Smeets, A., & Lejeune, M. P. (2005). Sensory and gastrointestinal satiety effects of capsaicin on food intake. International Journal of Obesity, 29(6), 682–688.

    Article  CAS  PubMed  Google Scholar 

  422. Janssens, P. L., Hursel, R., & Westerterp-Plantenga, M. S. (2014). Capsaicin increases sensation of fullness in energy balance, and decreases desire to eat after dinner in negative energy balance. Appetite, 77, 44–49.

    Article  PubMed  Google Scholar 

  423. van Avesaat, M., et al. (2016). Capsaicin-induced satiety is associated with gastrointestinal distress but not with the release of satiety hormones. The American Journal of Clinical Nutrition, 103(2), 305–313.

    Article  CAS  PubMed  Google Scholar 

  424. Rogers, J., et al. (2018). Capsaicinoids supplementation decreases percent body fat and fat mass: Adjustment using covariates in a post hoc analysis. BMC Obesity, 5, 22.

    Article  PubMed  PubMed Central  Google Scholar 

  425. Josse, A. R., et al. (2010). Effects of capsinoid ingestion on energy expenditure and lipid oxidation at rest and during exercise. Nutrition & Metabolism (London), 7, 65.

    Article  CAS  Google Scholar 

  426. Lejeune, M. P., Kovacs, E. M., & Westerterp-Plantenga, M. S. (2003). Effect of capsaicin on substrate oxidation and weight maintenance after modest body-weight loss in human subjects. British Journal of Nutrition, 90(3), 651–659.

    Article  CAS  Google Scholar 

  427. Janssens, P. L., et al. (2013). Acute effects of capsaicin on energy expenditure and fat oxidation in negative energy balance. PLoS One, 8(7), e67786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  428. Ludy, M. J., Moore, G. E., & Mattes, R. D. (2012). The effects of capsaicin and capsiate on energy balance: Critical review and meta-analyses of studies in humans. Chemical Senses, 37(2), 103–121.

    Article  CAS  PubMed  Google Scholar 

  429. Yoneshiro, T., et al. (2012). Nonpungent capsaicin analogs (capsinoids) increase energy expenditure through the activation of brown adipose tissue in humans. The American Journal of Clinical Nutrition, 95(4), 845–850.

    Article  CAS  PubMed  Google Scholar 

  430. Galgani, J. E., Ryan, D. H., & Ravussin, E. (2010). Effect of capsinoids on energy metabolism in human subjects. British Journal of Nutrition, 103(1), 38–42.

    Article  CAS  Google Scholar 

  431. Song, J. X., et al. (2017). Dietary capsaicin improves glucose homeostasis and alters the gut microbiota in obese diabetic ob/ob mice. Frontiers in Physiology, 8, 602.

    Article  PubMed  PubMed Central  Google Scholar 

  432. Kang, C., et al. (2017). Gut microbiota mediates the protective effects of dietary capsaicin against chronic low-grade inflammation and associated obesity induced by high-fat diet. MBio, 8(3), e00470–e00417.

    CAS  PubMed  PubMed Central  Google Scholar 

  433. Lu, Q. Y., et al. (2017). Prebiotic potential and chemical composition of seven culinary spice extracts. Journal of Food Science, 82(8), 1807–1813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  434. Qin, Y., et al. (2017). Capsaicin supplementation improved risk factors of coronary heart disease in individuals with low HDL-C levels. Nutrients, 9(9), 1037.

    Article  CAS  PubMed Central  Google Scholar 

  435. Yuan, L. J., et al. (2016). Capsaicin-containing chili improved postprandial hyperglycemia, hyperinsulinemia, and fasting lipid disorders in women with gestational diabetes mellitus and lowered the incidence of large-for-gestational-age newborns. Clinical Nutrition, 35(2), 388–393.

    Article  CAS  PubMed  Google Scholar 

  436. Bode, A. M., & Dong, Z. (2011). The two faces of capsaicin. Cancer Research, 71(8), 2809.

    Article  CAS  PubMed  Google Scholar 

  437. Clark, R., & Lee, S. H. (2016). Anticancer properties of capsaicin against human cancer. Anticancer Research, 36(3), 837–843.

    CAS  PubMed  Google Scholar 

  438. Georgescu, S. R., et al. (2017). Capsaicin: Friend or foe in skin cancer and other related malignancies? Nutrients, 9(12), 1365.

    Article  CAS  PubMed Central  Google Scholar 

  439. Wang, F., et al. (2016). Capsaicin reactivates hMOF in gastric cancer cells and induces cell growth inhibition. Cancer Biology & Therapy, 17(11), 1117–1125.

    Article  CAS  Google Scholar 

  440. Anandakumar, P., et al. (2015). The anticancer role of capsaicin in experimentally induced lung carcinogenesis. Journal of Pharmacopuncture, 18(2), 19–25.

    Article  PubMed  PubMed Central  Google Scholar 

  441. Ramos-Torres, A., et al. (2016). The pepper’s natural ingredient capsaicin induces autophagy blockage in prostate cancer cells. Oncotarget, 7(2), 1569–1583.

    Article  PubMed  Google Scholar 

  442. Demmig-Adams, B., & Adams, R. B. (2013). Eye nutrition in context: Mechanisms, implementation, and future directions. Nutrients, 5(7), 2483–2501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  443. Fernandez-Bedmar, Z., & Alonso-Moraga, A. (2016). In vivo and in vitro evaluation for nutraceutical purposes of capsaicin, capsanthin, lutein and four pepper varieties. Food and Chemical Toxicology, 98(Pt B), 89–99.

    Article  CAS  PubMed  Google Scholar 

  444. Koushan, K., et al. (2013). The role of lutein in eye-related disease. Nutrients, 5(5), 1823–1839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  445. Abdel-Aal el, S. M., et al. (2013). Dietary sources of lutein and zeaxanthin carotenoids and their role in eye health. Nutrients, 5(4), 1169–1185.

    Article  CAS  Google Scholar 

  446. Buscemi, S., et al. (2018). The effect of lutein on eye and extra-eye health. Nutrients, 10(9), 1321.

    Article  CAS  PubMed Central  Google Scholar 

  447. Eisenhauer, B., et al. (2017). Lutein and zeaxanthin-food sources, bioavailability and dietary variety in age-related macular degeneration protection. Nutrients, 9(2), 120.

    Article  CAS  PubMed Central  Google Scholar 

  448. Tsao, R. (2010). Chemistry and biochemistry of dietary polyphenols. Nutrients, 2(12), 1231–1246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  449. Sora, G. T., et al. (2015). A comparative study of the capsaicinoid and phenolic contents and in vitro antioxidant activities of the peppers of the genus Capsicum: An application of chemometrics. Journal of Food Science and Technology, 52(12), 8086–8094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  450. Moreno-Ramirez, Y. D. R., et al. (2018). Free radical-scavenging capacities, phenolics and capsaicinoids in wild piquin chili (Capsicum annuum var. Glabriusculum). Molecules, 23(10), 2655.

    Article  CAS  PubMed Central  Google Scholar 

  451. Castro-Concha, L. A., et al. (2014). Antioxidant capacity and total phenolic content in fruit tissues from accessions of Capsicum chinense Jacq. (Habanero pepper) at different stages of ripening. Scientific World Journal, 2014, 809073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  452. Sandoval-Castro, C. J., et al. (2017). Bioactive compounds and antioxidant activity in scalded Jalapeno pepper industrial byproduct (Capsicum annuum). Journal of Food Science and Technology, 54(7), 1999–2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  453. Saibabu, V., et al. (2015). Therapeutic potential of dietary phenolic acids. Advances in Pharmacological Sciences, 2015, 823539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  454. Sricharoen, P., et al. (2017). Phytochemicals in capsicum oleoresin from different varieties of hot chilli peppers with their antidiabetic and antioxidant activities due to some phenolic compounds. Ultrasonics Sonochemistry, 38, 629–639.

    Article  CAS  PubMed  Google Scholar 

  455. Dzialo, M., et al. (2016). The potential of plant phenolics in prevention and therapy of skin disorders. International Journal of Molecular Sciences, 17(2), 160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  456. Pizzino, G., et al. (2017). Oxidative stress: Harms and benefits for human health. Oxidative Medicine and Cellular Longevity, 2017, 8416763.

    PubMed  PubMed Central  Google Scholar 

  457. Perez-Ternero, C., et al. (2017). Ferulic acid, a bioactive component of rice bran, improves oxidative stress and mitochondrial biogenesis and dynamics in mice and in human mononuclear cells. The Journal of Nutritional Biochemistry, 48, 51–61.

    Article  CAS  PubMed  Google Scholar 

  458. Gerin, F., et al. (2016). The effects of ferulic acid against oxidative stress and inflammation in formaldehyde-induced hepatotoxicity. Inflammation, 39(4), 1377–1386.

    Article  CAS  PubMed  Google Scholar 

  459. Bumrungpert, A., et al. (2018). Ferulic acid supplementation improves lipid profiles, oxidative stress, and inflammatory status in hyperlipidemic subjects: A randomized, double-blind, placebo-controlled clinical trial. Nutrients, 10(6), 713.

    Article  CAS  PubMed Central  Google Scholar 

  460. Zych, M., et al. (2018). The effects of sinapic acid on the development of metabolic disorders induced by estrogen deficiency in rats. Oxidative Medicine and Cellular Longevity, 2018, 9274246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  461. Raish, M., et al. (2018). Sinapic acid ameliorates bleomycin-induced lung fibrosis in rats. Biomedicine & Pharmacotherapy, 108, 224–231.

    Article  CAS  Google Scholar 

  462. Chen, C. (2016). Sinapic acid and its derivatives as medicine in oxidative stress-induced diseases and aging. Oxidative Medicine and Cellular Longevity, 2016, 3571614.

    PubMed  Google Scholar 

  463. Srinivasan, M., Sudheer, A. R., & Menon, V. P. (2007). Ferulic acid: Therapeutic potential through its antioxidant property. Journal of Clinical Biochemistry and Nutrition, 40(2), 92–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  464. Kumar, N., & Pruthi, V. (2014). Potential applications of ferulic acid from natural sources. Biotechnology Reports (Amsterdam, Netherlands), 4, 86–93.

    CAS  Google Scholar 

  465. Nićiforović, N., & Abramovič, H. (2014). Sinapic acid and its derivatives: Natural sources and bioactivity. Comprehensive Reviews in Food Science and Food Safety, 13(1), 34–51.

    Article  CAS  PubMed  Google Scholar 

  466. Szwajgier, D., Borowiec, K., & Pustelniak, K. (2017). The neuroprotective effects of phenolic acids: Molecular mechanism of action. Nutrients, 9(5), 477.

    Article  CAS  PubMed Central  Google Scholar 

  467. Sgarbossa, A., Giacomazza, D., & di Carlo, M. (2015). Ferulic Acid: A hope for Alzheimer’s disease therapy from plants. Nutrients, 7(7), 5764–5782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  468. Ren, Z., et al. (2017). Ferulic acid exerts neuroprotective effects against cerebral ischemia/reperfusion-induced injury via antioxidant and anti-apoptotic mechanisms in vitro and in vivo. International Journal of Molecular Medicine, 40(5), 1444–1456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  469. Zare, K., et al. (2015). The neuroprotective potential of sinapic acid in the 6-hydroxydopamine-induced hemi-parkinsonian rat. Metabolic Brain Disease, 30(1), 205–213.

    Article  CAS  PubMed  Google Scholar 

  470. Lee, H. E., et al. (2012). Neuroprotective effect of sinapic acid in a mouse model of amyloid beta(1-42) protein-induced Alzheimer’s disease. Pharmacology, Biochemistry, and Behavior, 103(2), 260–266.

    Article  CAS  PubMed  Google Scholar 

  471. Karakida, F., et al. (2007). Cerebral protective and cognition-improving effects of sinapic acid in rodents. Biological & Pharmaceutical Bulletin, 30(3), 514–519.

    Article  CAS  Google Scholar 

  472. Das, S., et al. (2005). Capsicum spray injury of the eye. International Ophthalmology, 26(4-5), 171–173.

    Article  PubMed  Google Scholar 

  473. Lee, R. J., et al. (1996). Personal defense sprays: Effects and management of exposure. Journal of the American Optometric Association, 67(9), 548–560.

    CAS  PubMed  Google Scholar 

  474. Gonlachanvit, S., Mahayosnond, A., & Kullavanijaya, P. (2009). Effects of chili on postprandial gastrointestinal symptoms in diarrhoea predominant irritable bowel syndrome: Evidence for capsaicin-sensitive visceral nociception hypersensitivity. Neurogastroenterology and Motility, 21(1), 23–32.

    Article  CAS  PubMed  Google Scholar 

  475. Notani, P. N., & Jayant, K. (1987). Role of diet in upper aerodigestive tract cancers. Nutrition and Cancer, 10(1-2), 103–113.

    Article  CAS  PubMed  Google Scholar 

  476. Lopez-Carrillo, L., Hernandez Avila, M., & Dubrow, R. (1994). Chili pepper consumption and gastric cancer in Mexico: A case-control study. American Journal of Epidemiology, 139(3), 263–271.

    Article  CAS  PubMed  Google Scholar 

  477. Serra, I., et al. (2002). Association of chili pepper consumption, low socioeconomic status and longstanding gallstones with gallbladder cancer in a Chilean population. International Journal of Cancer, 102(4), 407–411.

    Article  CAS  PubMed  Google Scholar 

  478. Atkinson, F. S., Foster-Powell, K., & Brand-Miller, J. C. (2008). International tables of glycemic index and glycemic load values: 2008. Diabetes Care, 31(12), 2281–2283.

    Article  PubMed  PubMed Central  Google Scholar 

  479. Hanhineva, K., et al. (2010). Impact of dietary polyphenols on carbohydrate metabolism. International Journal of Molecular Sciences, 11(4), 1365–1402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  480. Lv, X., et al. (2015). Citrus fruits as a treasure trove of active natural metabolites that potentially provide benefits for human health. Chemistry Central Journal, 9, 68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  481. Dhingra, D., et al. (2012). Dietary fibre in foods: A review. Journal of Food Science and Technology, 49(3), 255–266.

    Article  CAS  PubMed  Google Scholar 

  482. Slavin, J. L., & Lloyd, B. (2012). Health benefits of fruits and vegetables. Advances in Nutrition (Bethesda, MD), 3(4), 506–516.

    Article  CAS  Google Scholar 

  483. Timm, D. A., & Slavin, J. L. (2008). Dietary fiber and the relationship to chronic diseases. American Journal of Lifestyle Medicine, 2(3), 233–240.

    Article  Google Scholar 

  484. Mackowiak, K., Torlinska-Walkowiak, N., & Torlinska, B. (2016). Dietary fibre as an important constituent of the diet. Postȩpy Higieny i Medycyny Doświadczalnej (Online), 70, 104–109.

    Article  Google Scholar 

  485. Lattimer, J. M., & Haub, M. D. (2010). Effects of dietary fiber and its components on metabolic health. Nutrients, 2(12), 1266–1289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  486. Wisker, E., Martina Daniel, M., & Feldheim, W. (1994). Effects of fiber concentrate from citrus fruits in humans. Nutrition Research, 14, 361–372.

    Article  Google Scholar 

  487. Kaczmarczyk, M. M., Miller, M. J., & Freund, G. G. (2012). The health benefits of dietary fiber: Beyond the usual suspects of type 2 diabetes mellitus, cardiovascular disease and colon cancer. Metabolism, 61(8), 1058–1066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  488. Veronese, N., et al. (2018). Dietary fiber and health outcomes: An umbrella review of systematic reviews and meta-analyses. The American Journal of Clinical Nutrition, 107(3), 436–444.

    Article  PubMed  Google Scholar 

  489. Chen, J. P., et al. (2017). Dietary fiber and metabolic syndrome: A meta-analysis and review of related mechanisms. Nutrients, 10(1), 24.

    Article  CAS  PubMed Central  Google Scholar 

  490. Post, R. E., et al. (2012). Dietary fiber for the treatment of type 2 diabetes mellitus: A meta-analysis. Journal of American Board of Family Medicine, 25(1), 16–23.

    Article  Google Scholar 

  491. McRae, M. P. (2018). Dietary fiber intake and type 2 diabetes mellitus: An umbrella review of meta-analyses. Journal of Chiropractic Medicine, 17(1), 44–53.

    Article  PubMed  PubMed Central  Google Scholar 

  492. Chen, C., et al. (2016). Therapeutic effects of soluble dietary fiber consumption on type 2 diabetes mellitus. Experimental and Therapeutic Medicine, 12(2), 1232–1242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  493. Wang, P. Y., et al. (2016). Higher intake of fruits, vegetables or their fiber reduces the risk of type 2 diabetes: A meta-analysis. Journal of Diabetes Investigation, 7(1), 56–69.

    Article  CAS  PubMed  Google Scholar 

  494. McRae, M. P. (2017). dietary fiber is beneficial for the prevention of cardiovascular disease: An umbrella review of meta-analyses. Journal of Chiropractic Medicine, 16(4), 289–299.

    Article  PubMed  PubMed Central  Google Scholar 

  495. Sanchez-Muniz, F. J. (2012). Dietary fibre and cardiovascular health. Nutrición Hospitalaria, 27(1), 31–45.

    CAS  PubMed  Google Scholar 

  496. Asgary, S., & Keshvari, M. (2013). Effects of Citrus sinensis juice on blood pressure. ARYA atherosclerosis, 9(1), 98–101.

    PubMed  PubMed Central  Google Scholar 

  497. Surampudi, P., et al. (2016). Lipid Lowering with Soluble Dietary Fiber. Current Atherosclerosis Reports, 18(12), 75.

    Article  CAS  PubMed  Google Scholar 

  498. Brouns, F., et al. (2012). Cholesterol-lowering properties of different pectin types in mildly hyper-cholesterolemic men and women. European Journal of Clinical Nutrition, 66(5), 591–599.

    Article  CAS  PubMed  Google Scholar 

  499. Aller, R., et al. (2004). Effect of soluble fiber intake in lipid and glucose levels in healthy subjects: A randomized clinical trial. Diabetes Research and Clinical Practice, 65(1), 7–11.

    Article  CAS  PubMed  Google Scholar 

  500. Slavin, J. L. (2005). Dietary fiber and body weight. Nutrition, 21(3), 411–418.

    Article  PubMed  Google Scholar 

  501. Buil-Cosiales, P., et al. (2017). Consumption of fruit or fiber-fruit decreases the risk of cardiovascular disease in a Mediterranean young cohort. Nutrients, 9(3), 295.

    Article  CAS  PubMed Central  Google Scholar 

  502. Lairon, D., et al. (2005). Dietary fiber intake and risk factors for cardiovascular disease in French adults. The American Journal of Clinical Nutrition, 82(6), 1185–1194.

    Article  CAS  PubMed  Google Scholar 

  503. Xu, H., et al. (2016). Excess protein intake relative to fiber and cardiovascular events in elderly men with chronic kidney disease. Nutrition, Metabolism and Cardiovascular Diseases, 26(7), 597–602.

    Article  CAS  PubMed  Google Scholar 

  504. Threapleton, D. E., et al. (2013). Dietary fibre and cardiovascular disease mortality in the UK Women’s Cohort Study. European Journal of Epidemiology, 28(4), 335–346.

    Article  CAS  PubMed  Google Scholar 

  505. Mirmiran, P., et al. (2016). A prospective study of different types of dietary fiber and risk of cardiovascular disease: Tehran lipid and glucose study. Nutrients, 8(11), 686.

    Article  CAS  PubMed Central  Google Scholar 

  506. Diaz, V. A., et al. (2005). Race and diet in the overweight: Association with cardiovascular risk in a nationally representative sample. Nutrition, 21(6), 718–725.

    Article  PubMed  Google Scholar 

  507. Teramoto, T. (2017). Is “The Japan Diet” cardioprotective? Journal of Atherosclerosis and Thrombosis, 24(4), 388–389.

    Article  PubMed  PubMed Central  Google Scholar 

  508. Yamada, T., et al. (2011). Frequency of citrus fruit intake is associated with the incidence of cardiovascular disease: The Jichi Medical School cohort study. Journal of Epidemiology, 21(3), 169–175.

    Article  PubMed  PubMed Central  Google Scholar 

  509. Gianfredi, V., et al. (2018). Is dietary fibre truly protective against colon cancer? A systematic review and meta-analysis. International Journal of Food Sciences and Nutrition, 69(8), 904–915.

    Article  CAS  PubMed  Google Scholar 

  510. Levi, F., et al. (2001). Dietary fibre and the risk of colorectal cancer. European Journal of Cancer, 37(16), 2091–2096.

    Article  CAS  PubMed  Google Scholar 

  511. Kunzmann, A. T., et al. (2015). Dietary fiber intake and risk of colorectal cancer and incident and recurrent adenoma in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. The American Journal of Clinical Nutrition, 102(4), 881–890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  512. Murphy, N., et al. (2012). Dietary fibre intake and risks of cancers of the colon and rectum in the European prospective investigation into cancer and nutrition (EPIC). PLoS One, 7(6), e39361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  513. Abdullah, M. M., et al. (2015). Dietary fibre intakes and reduction in functional constipation rates among Canadian adults: A cost-of-illness analysis. Food & Nutrition Research, 59, 28646.

    Article  CAS  Google Scholar 

  514. Yang, J., et al. (2012). Effect of dietary fiber on constipation: A meta analysis. World Journal of Gastroenterology, 18(48), 7378–7383.

    Article  PubMed  PubMed Central  Google Scholar 

  515. Erdogan, A., et al. (2016). Randomised clinical trial: Mixed soluble/insoluble fibre vs. psyllium for chronic constipation. Alimentary Pharmacology and Therapeutics, 44(1), 35–44.

    Article  CAS  PubMed  Google Scholar 

  516. Tiwary, C. M., Ward, J. A., & Jackson, B. A. (1997). Effect of pectin on satiety in healthy US Army adults. Journal of the American College of Nutrition, 16(5), 423–428.

    Article  CAS  PubMed  Google Scholar 

  517. Bertoia, M. L., et al. (2015). Changes in intake of fruits and vegetables and weight change in united states men and women followed for up to 24 years: Analysis from three prospective cohort studies. PLoS Medicine, 12(9), e1001878.

    Article  PubMed  PubMed Central  Google Scholar 

  518. Burton-Freeman, B., et al. (2017). Ratios of soluble and insoluble dietary fibers on satiety and energy intake in overweight pre- and postmenopausal women. Nutrition and Healthy Aging, 4(2), 157–168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  519. Shreiner, A. B., Kao, J. Y., & Young, V. B. (2015). The gut microbiome in health and in disease. Current Opinion in Gastroenterology, 31(1), 69–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  520. Zeng, H., Lazarova, D. L., & Bordonaro, M. (2014). Mechanisms linking dietary fiber, gut microbiota and colon cancer prevention. World Journal of Gastrointestinal Oncology, 6(2), 41–51.

    Article  PubMed  PubMed Central  Google Scholar 

  521. Carlson, J. L., et al. (2018). Health effects and sources of prebiotic dietary fiber. Current Developments in Nutrition, 2(3), nzy005–nzy005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  522. Holscher, H. D. (2017). Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes, 8(2), 172–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  523. Kellow, N. J., Coughlan, M. T., & Reid, C. M. (2014). Metabolic benefits of dietary prebiotics in human subjects: A systematic review of randomised controlled trials. British Journal of Nutrition, 111(7), 1147–1161.

    Article  CAS  Google Scholar 

  524. Slavin, J. (2013). Fiber and prebiotics: Mechanisms and health benefits. Nutrients, 5(4), 1417–1435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  525. Khan, M. S. A., et al. (2018). Fruit-derived polysaccharides and terpenoids: Recent update on the gastroprotective effects and mechanisms. Frontiers in Pharmacology, 9, 569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  526. Cho, K. S., et al. (2017). Terpenes from forests and human health. Toxicological Research, 33(2), 97–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  527. Paduch, R., et al. (2007). Terpenes: Substances useful in human healthcare. Archivum Immunologiae et Therapiae Experimentalis, 55(5), 315.

    Article  CAS  PubMed  Google Scholar 

  528. Wagner, K. H., & Elmadfa, I. (2003). Biological relevance of terpenoids. Overview focusing on mono-, di- and tetraterpenes. Annals of Nutrition and Metabolism, 47(3-4), 95–106.

    Article  CAS  PubMed  Google Scholar 

  529. Thoppil, R. J., & Bishayee, A. (2011). Terpenoids as potential chemopreventive and therapeutic agents in liver cancer. World Journal of Hepatology, 3(9), 228–249.

    Article  PubMed  PubMed Central  Google Scholar 

  530. Manayi, A., et al. (2016). Natural terpenoids as a promising source for modulation of GABAergic system and treatment of neurological diseases. Pharmacological Reports, 68(4), 671–679.

    Article  CAS  PubMed  Google Scholar 

  531. Kumar, S., & Pandey, A. K. (2013). Chemistry and biological activities of flavonoids: An Overview. The Scientific World Journal, 2013, 162750.

    PubMed  PubMed Central  Google Scholar 

  532. Xiao, Z. P., et al. (2011). Flavonoids health benefits and their molecular mechanism. Mini Reviews in Medicinal Chemistry, 11(2), 169–177.

    Article  CAS  PubMed  Google Scholar 

  533. Yao, L. H., et al. (2004). Flavonoids in food and their health benefits. Plant Foods for Human Nutrition, 59(3), 113–122.

    Article  CAS  PubMed  Google Scholar 

  534. Pietta, P. G. (2000). Flavonoids as antioxidants. Journal of Natural Products, 63(7), 1035–1042.

    Article  CAS  PubMed  Google Scholar 

  535. Young, A. J., & Lowe, G. L. (2018). Carotenoids-antioxidant properties. Antioxidants (Basel, Switzerland), 7(2), 28.

    Google Scholar 

  536. Fiedor, J., & Burda, K. (2014). Potential role of carotenoids as antioxidants in human health and disease. Nutrients, 6(2), 466–488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  537. Hammond Jr., B. R., & Renzi, L. M. (2013). Carotenoids. Advances in Nutrition, 4(4), 474–476.

    Article  PubMed  PubMed Central  Google Scholar 

  538. Paiva, S. A., & Russell, R. M. (1999). Beta-carotene and other carotenoids as antioxidants. Journal of the American College of Nutrition, 18(5), 426–433.

    Article  CAS  PubMed  Google Scholar 

  539. Zou, Z., et al. (2016). Antioxidant activity of citrus fruits. Food Chemistry, 196, 885–896.

    Article  CAS  PubMed  Google Scholar 

  540. Oikeh, E. I., et al. (2016). Phytochemical, antimicrobial, and antioxidant activities of different citrus juice concentrates. Food Science & Nutrition, 4(1), 103–109.

    Article  CAS  Google Scholar 

  541. Hijaz, F., et al. (2016). Nucleotides, micro- and macro-nutrients, limonoids, flavonoids, and hydroxycinnamates composition in the phloem sap of sweet orange. Plant Signaling & Behavior, 11(6), e1183084.

    Article  CAS  Google Scholar 

  542. Pham-Huy, L. A., He, H., & Pham-Huy, C. (2008). Free radicals, antioxidants in disease and health. International Journal of Biomedical Sciences, 4(2), 89–96.

    CAS  Google Scholar 

  543. Lobo, V., et al. (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy Reviews, 4(8), 118–126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  544. Roy, A., & Saraf, S. (2006). Limonoids: Overview of significant bioactive triterpenes distributed in plants kingdom. Biological & Pharmaceutical Bulletin, 29(2), 191–201.

    Article  CAS  Google Scholar 

  545. Gualdani, R., et al. (2016). The chemistry and pharmacology of citrus limonoids. Molecules, 21(11), 1530.

    Article  CAS  PubMed Central  Google Scholar 

  546. Tundis, R., Loizzo, M. R., & Menichini, F. (2014). An overview on chemical aspects and potential health benefits of limonoids and their derivatives. Critical Reviews in Food Science and Nutrition, 54(2), 225–250.

    Article  CAS  PubMed  Google Scholar 

  547. Manners, G. D. (2007). Citrus limonoids: Analysis, bioactivity, and biomedical prospects. Journal of Agricultural and Food Chemistry, 55(21), 8285–8294.

    Article  CAS  PubMed  Google Scholar 

  548. Nazaruk, J., & Borzym-Kluczyk, M. (2015). The role of triterpenes in the management of diabetes mellitus and its complications. Phytochemistry reviews: proceedings of the Phytochemical Society of Europe, 14(4), 675–690.

    Article  CAS  Google Scholar 

  549. Boshtam, M., et al. (2013). Impacts of fresh lime juice and peel on atherosclerosis progression in an animal model. ARYA atherosclerosis, 9(6), 357–362.

    PubMed  PubMed Central  Google Scholar 

  550. Kim, J., et al. (2012). Cancer chemopreventive properties of citrus limonoids. In Emerging trends in dietary components for preventing and combating disease (Vol. 37-50). Washington, DC: American Chemical Society.

    Google Scholar 

  551. Velmurugan, B. K., et al. (2018). Neuroprotective role of phytochemicals. Molecules, 23(10), 81.

    Article  CAS  Google Scholar 

  552. Barreca, D., et al. (2017). Flavanones: Citrus phytochemical with health-promoting properties. Biofactors, 43(4), 495–506.

    Article  CAS  PubMed  Google Scholar 

  553. Testai, L., & Calderone, V. (2017). Nutraceutical value of citrus flavanones and their implications in cardiovascular disease. Nutrients, 9(5), 502.

    Article  CAS  PubMed Central  Google Scholar 

  554. Turner, T., & Burri, B. J. (2013). Potential nutritional benefits of current citrus consumption. Agriculture, 3, 170–187.

    Article  Google Scholar 

  555. Assini, J. M., Mulvihill, E. E., & Huff, M. W. (2013). Citrus flavonoids and lipid metabolism. Current Opinion in Lipidology, 24(1), 34–40.

    Article  CAS  PubMed  Google Scholar 

  556. Peterson, J., et al. (2006). Flavanones in orange, tangerines (mandarins), tangors, and tangelos: A compilation and review of the data from the analytical literature. Journal of Food Composition and Analysis, 19, S66–S73.

    Article  CAS  Google Scholar 

  557. Chanet, A., et al. (2012). Citrus flavanones: What is their role in cardiovascular protection? Journal of Agricultural and Food Chemistry, 60(36), 8809–8822.

    Article  CAS  PubMed  Google Scholar 

  558. Graf, B., Milbury, P., & Blumberg, J. (2005). Flavonols, flavones, flavanones, and human health: Epidemiological evidence. Journal of Medicinal Food, 8, 281–290.

    Article  CAS  PubMed  Google Scholar 

  559. Brahmachari, G. (2008). Naturally occurring flavanones: An overview. Natural Product Communications, 3, 1337–1354.

    Article  CAS  Google Scholar 

  560. Peterson, J., et al. (2006). Flavanones in grapefruit, lemons, and limes: A compilation and review of the data from the analytical literature. Journal of Food Composition and Analysis, 19, S74–S80.

    Article  CAS  Google Scholar 

  561. Khan, M. K., Zill-E-Huma, & Dangles, O. (2014). A comprehensive review on flavanones, the major citrus polyphenols. Journal of Food Composition and Analysis, 33(1), 85–104.

    Article  CAS  Google Scholar 

  562. Tejada, S., et al. (2018). Potential anti-inflammatory effects of hesperidin from the genus Citrus. Current Medicinal Chemistry, 25(37), 4929–4945.

    Article  CAS  PubMed  Google Scholar 

  563. Benavente-Garcia, O., & Castillo, J. (2008). Update on uses and properties of citrus flavonoids: New findings in anticancer, cardiovascular, and anti-inflammatory activity. Journal of Agricultural and Food Chemistry, 56(15), 6185–6205.

    Article  CAS  PubMed  Google Scholar 

  564. Roohbakhsh, A., et al. (2014). Neuropharmacological properties and pharmacokinetics of the citrus flavonoids hesperidin and hesperetin--a mini-review. Life Sciences, 113(1-2), 1–6.

    Article  CAS  PubMed  Google Scholar 

  565. Parhiz, H., et al. (2015). Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: An updated review of their molecular mechanisms and experimental models. Phytotherapy Research, 29(3), 323–331.

    Article  CAS  PubMed  Google Scholar 

  566. Roohbakhsh, A., et al. (2015). Molecular mechanisms behind the biological effects of hesperidin and hesperetin for the prevention of cancer and cardiovascular diseases. Life Sciences, 124, 64–74.

    Article  CAS  PubMed  Google Scholar 

  567. Ahmadi, A., & Shadboorestan, A. (2016). Oxidative stress and cancer; the role of hesperidin, a citrus natural bioflavonoid, as a cancer chemoprotective agent. Nutrition and Cancer, 68(1), 29–39.

    Article  CAS  PubMed  Google Scholar 

  568. Cho, J. (2006). Antioxidant and neuroprotective effects of hesperidin and its aglycone hesperetin. Archives of Pharmacal Research, 29(8), 699–706.

    Article  CAS  PubMed  Google Scholar 

  569. Chen, R., et al. (2016). Therapeutic potential of naringin: An overview. Pharmaceutical Biology, 54(12), 3203–3210.

    Article  CAS  PubMed  Google Scholar 

  570. Alam, M. A., Kauter, K., & Brown, L. (2013). Naringin improves diet-induced cardiovascular dysfunction and obesity in high carbohydrate, high fat diet-fed rats. Nutrients, 5(3), 637–650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  571. Alam, M. A., et al. (2014). Effect of citrus flavonoids, naringin and naringenin, on metabolic syndrome and their mechanisms of action. Advances in Nutrition, 5(4), 404–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  572. Viswanatha, G. L., Shylaja, H., & Moolemath, Y. (2017). The beneficial role of Naringin- a citrus bioflavonoid, against oxidative stress-induced neurobehavioral disorders and cognitive dysfunction in rodents: A systematic review and meta-analysis. Biomedicine & Pharmacotherapy, 94, 909–929.

    Article  CAS  Google Scholar 

  573. Alquezar, B., Rodrigo, M., & Zacarías, L. (2008). Carotenoid biosynthesis and its regulation in citrus fruits. Current Medicinal Chemistry, 2, 23–35.

    Google Scholar 

  574. Eldahshan, O., & Singab, A. N. (2013). Carotenoids. Journal of Pharmacognosy and Phytochemistry, 2(1), 225–234.

    Google Scholar 

  575. Matsumoto, H., et al. (2007). Quantification of carotenoids in citrus fruit by LC-MS and comparison of patterns of seasonal changes for carotenoids among citrus varieties. Journal of Agricultural and Food Chemistry, 55(6), 2356–2368.

    Article  CAS  PubMed  Google Scholar 

  576. Ikoma, Y., Matsumoto, H., & Kato, M. (2016). Diversity in the carotenoid profiles and the expression of genes related to carotenoid accumulation among citrus genotypes. Breeding Science, 66(1), 139–147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  577. Eggersdorfer, M., & Wyss, A. (2018). Carotenoids in human nutrition and health. Archives of Biochemistry and Biophysics, 652, 18–26.

    Article  CAS  PubMed  Google Scholar 

  578. Milani, A., et al. (2017). Carotenoids: Biochemistry, pharmacology and treatment. British Journal of Pharmacology, 174(11), 1290–1324.

    Article  CAS  PubMed  Google Scholar 

  579. Woodside, J. V., et al. (2015). Carotenoids and health in older people. Maturitas, 80(1), 63–68.

    Article  CAS  PubMed  Google Scholar 

  580. Johnson, E. J. (2002). The role of carotenoids in human health. Nutrition in Clinical Care, 5(2), 56–65.

    Article  PubMed  Google Scholar 

  581. Krinsky, N. I. (2001). Carotenoids as antioxidants. Nutrition, 17(10), 815–817.

    Article  CAS  PubMed  Google Scholar 

  582. Mohammadzadeh Honarvar, N., et al. (2017). Molecular anti-inflammatory mechanisms of retinoids and carotenoids in Alzheimer’s disease: A review of current evidence. Journal of Molecular Neuroscience, 61(3), 289–304.

    Article  CAS  PubMed  Google Scholar 

  583. Rubin, L. P., et al. (2017). Metabolic effects of inflammation on vitamin A and carotenoids in humans and animal models. Advances in Nutrition (Bethesda, MD), 8(2), 197–212.

    Article  CAS  Google Scholar 

  584. Kaulmann, A., & Bohn, T. (2014). Carotenoids, inflammation, and oxidative stress--implications of cellular signaling pathways and relation to chronic disease prevention. Nutrition Research, 34(11), 907–929.

    Article  CAS  PubMed  Google Scholar 

  585. Riccioni, G. (2009). Carotenoids and cardiovascular disease. Current Atherosclerosis Reports, 11(6), 434–439.

    Article  CAS  PubMed  Google Scholar 

  586. Giordano, P., et al. (2012). Carotenoids and cardiovascular risk. Current Pharmaceutical Design, 18(34), 5577–5589.

    Article  CAS  PubMed  Google Scholar 

  587. Ciccone, M. M., et al. (2013). Dietary intake of carotenoids and their antioxidant and anti-inflammatory effects in cardiovascular care. Mediators of Inflammation, 2013, 782137–782137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  588. Gammone, M. A., Riccioni, G., & D’Orazio, N. (2015). Carotenoids: Potential allies of cardiovascular health? Food & Nutrition Research, 59, 26762–26762.

    Article  CAS  Google Scholar 

  589. Soares Nda, C., et al. (2015). Anticancer properties of carotenoids in prostate cancer. A review. Histology and Histopathology, 30(10), 1143–1154.

    PubMed  Google Scholar 

  590. Tanaka, T., Shnimizu, M., & Moriwaki, H. (2012). Cancer chemoprevention by carotenoids. Molecules, 17(3), 3202–3242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  591. Pal, D., Banerjee, S., & Ghosh, A. K. (2012). Dietary-induced cancer prevention: An expanding research arena of emerging diet related to healthcare system. Journal of Advanced Pharmaceutical Technology & Research, 3(1), 16–24.

    CAS  Google Scholar 

  592. Nishino, H., et al. (2009). Cancer prevention by carotenoids. Archives of Biochemistry and Biophysics, 483(2), 165–168.

    Article  CAS  PubMed  Google Scholar 

  593. Griffiths, K., et al. (2016). Food antioxidants and their anti-inflammatory properties: A potential role in cardiovascular diseases and cancer prevention. Diseases (Basel, Switzerland), 4(3), 28.

    Google Scholar 

  594. Sluijs, I., et al. (2015). Dietary intake of carotenoids and risk of type 2 diabetes. Nutrition, Metabolism and Cardiovascular Diseases, 25(4), 376–381.

    Article  CAS  PubMed  Google Scholar 

  595. Roohbakhsh, A., Karimi, G., & Iranshahi, M. (2017). Carotenoids in the treatment of diabetes mellitus and its complications: A mechanistic review. Biomedicine & Pharmacotherapy, 91, 31–42.

    Article  CAS  Google Scholar 

  596. Wu, J., et al. (2015). Intakes of lutein, zeaxanthin, and other carotenoids and age-related macular degeneration during 2 decades of prospective follow-up. JAMA Ophthalmology, 133(12), 1415–1424.

    Article  PubMed  PubMed Central  Google Scholar 

  597. Rasmussen, H. M., & Johnson, E. J. (2013). Nutrients for the aging eye. Clinical Interventions in Aging, 8, 741–748.

    CAS  PubMed  PubMed Central  Google Scholar 

  598. Cirmi, S., et al. (2016). Chemopreventive agents and inhibitors of cancer hallmarks: May citrus offer new perspectives? Nutrients, 8(11), 698.

    Article  CAS  PubMed Central  Google Scholar 

  599. Cirmi, S., et al. (2017). Anticancer potential of citrus juices and their extracts: A systematic review of both preclinical and clinical studies. Frontiers in Pharmacology, 8, 420–420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  600. Wang, A., et al. (2015). Citrus fruit intake substantially reduces the risk of esophageal cancer: A meta-analysis of epidemiologic studies. Medicine, 94(39), e1390–e1390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  601. Song, J.-K., & Bae, J.-M. (2013). Citrus fruit intake and breast cancer risk: A quantitative systematic review. Journal of Breast Cancer, 16(1), 72–76.

    Article  PubMed  PubMed Central  Google Scholar 

  602. Bae, J. M., Lee, E. J., & Guyatt, G. (2009). Citrus fruit intake and pancreatic cancer risk: A quantitative systematic review. Pancreas, 38(2), 168–174.

    Article  CAS  PubMed  Google Scholar 

  603. Bae, J. M., Lee, E. J., & Guyatt, G. (2008). Citrus fruit intake and stomach cancer risk: A quantitative systematic review. Gastric Cancer, 11(1), 23–32.

    Article  PubMed  Google Scholar 

  604. Bae, J. M., Lee, E. J., & Guyatt, G. (2008). Citrus fruits intake and prostate cancer risk: A quantitative systematic review. Journal of Preventive Medicine and Public Health, 41(3), 159–164.

    Article  PubMed  Google Scholar 

  605. Wabner, C. L., & Pak, C. Y. (1993). Effect of orange juice consumption on urinary stone risk factors. The Journal of Urology, 149(6), 1405–1408.

    Article  CAS  PubMed  Google Scholar 

  606. Gul, Z., & Monga, M. (2014). Medical and dietary therapy for kidney stone prevention. Korean Journal of Urology, 55(12), 775–779.

    Article  PubMed  PubMed Central  Google Scholar 

  607. Prezioso, D., et al. (2015). Dietary treatment of urinary risk factors for renal stone formation. A review of CLU Working Group. Archivio Italiano di Urologia, Andrologia, 87(2), 105–120.

    Article  CAS  PubMed  Google Scholar 

  608. De, S. K., Liu, X., & Monga, M. (2014). Changing trends in the American diet and the rising prevalence of kidney stones. Urology, 84(5), 1030–1033.

    Article  PubMed  Google Scholar 

  609. Odvina, C. V. (2006). Comparative value of orange juice versus lemonade in reducing stone-forming risk. Clinical Journal of the American Society of Nephrology, 1(6), 1269–1274.

    Article  CAS  PubMed  Google Scholar 

  610. Granger, M., & Eck, P. (2018). Dietary vitamin C in human health. Advances in Food and Nutrition Research, 83, 281–310.

    Article  PubMed  Google Scholar 

  611. Chambial, S., et al. (2013). Vitamin C in disease prevention and cure: An overview. Indian journal of clinical biochemistry: IJCB, 28(4), 314–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  612. Carr, A. C., & Maggini, S. (2017). Vitamin C and Immune Function. Nutrients, 9(11), 1211.

    Article  CAS  PubMed Central  Google Scholar 

  613. Wintergerst, E. S., Maggini, S., & Hornig, D. H. (2006). Immune-enhancing role of vitamin C and zinc and effect on clinical conditions. Annals of Nutrition & Metabolism, 50(2), 85–94.

    Article  CAS  Google Scholar 

  614. Sorice, A., et al. (2014). Ascorbic acid: Its role in immune system and chronic inflammation diseases. Mini Reviews in Medicinal Chemistry, 14(5), 444–452.

    Article  CAS  PubMed  Google Scholar 

  615. Ellulu, M. S., et al. (2015). Effect of vitamin C on inflammation and metabolic markers in hypertensive and/or diabetic obese adults: A randomized controlled trial. Drug Design, Development and Therapy, 9, 3405–3412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  616. Moser, M. A., & Chun, O. K. (2016). Vitamin C and heart health: A review based on findings from epidemiologic studies. International Journal of Molecular Sciences, 17(8), 1328.

    Article  CAS  PubMed Central  Google Scholar 

  617. Sharma, P. (2013). Vitamin C rich fruits can prevent heart disease. Indian Journal of Clinical Biochemistry, 28(3), 213–214.

    Article  PubMed  PubMed Central  Google Scholar 

  618. Carr, A. C., & Cook, J. (2018). Intravenous vitamin C for cancer therapy - identifying the current gaps in our knowledge. Frontiers in Physiology, 9, 1182.

    Article  PubMed  PubMed Central  Google Scholar 

  619. Vissers, M. C. M., & Das, A. B. (2018). Potential mechanisms of action for vitamin C in cancer: Reviewing the evidence. Frontiers in Physiology, 9, 809.

    Article  PubMed  PubMed Central  Google Scholar 

  620. van der Reest, J., & Gottlieb, E. (2016). Anti-cancer effects of vitamin C revisited. Cell Research, 26(3), 269–270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  621. Aghajanian, P., et al. (2015). The roles and mechanisms of actions of vitamin C in bone: New developments. Journal of Bone and Mineral Research, 30(11), 1945–1955.

    Article  CAS  PubMed  Google Scholar 

  622. DePhillipo, N. N., et al. (2018). Efficacy of vitamin C supplementation on collagen synthesis and oxidative stress after musculoskeletal injuries: A systematic review. Orthopaedic Journal of Sports Medicine, 6(10), 2325967118804544.

    Article  PubMed  PubMed Central  Google Scholar 

  623. Saokar Telang, P. (2013). Vitamin C in dermatology. Indian Dermatology Online Journal, 4, 143–146.

    Article  Google Scholar 

  624. Schagen, S. K., et al. (2012). Discovering the link between nutrition and skin aging. Dermato-Endocrinology, 4(3), 298–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  625. Shibuya, S., et al. (2014). Collagen peptide and vitamin C additively attenuate age-related skin atrophy in Sod1-deficient mice. Bioscience, Biotechnology, and Biochemistry, 78(7), 1212–1220.

    Article  CAS  PubMed  Google Scholar 

  626. Crisan, D., et al. (2015). The role of vitamin C in pushing back the boundaries of skin aging: An ultrasonographic approach. Clinical, Cosmetic and Investigational Dermatology, 8, 463–470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  627. Ertugrul, D. T., et al. (2013). Serum holotranscobalamine, vitamin B12, folic acid and homocysteine levels in alopecia areata patients. Cutaneous and Ocular Toxicology, 32(1), 1–3.

    Article  CAS  PubMed  Google Scholar 

  628. Ballot, D., et al. (1987). The effects of fruit juices and fruits on the absorption of iron from a rice meal. British Journal of Nutrition, 57(3), 331–343.

    Article  CAS  Google Scholar 

  629. Peneau, S., et al. (2008). Relationship between iron status and dietary fruit and vegetables based on their vitamin C and fiber content. The American Journal of Clinical Nutrition, 87(5), 1298–1305.

    Article  CAS  PubMed  Google Scholar 

  630. Kean, R. J., et al. (2015). Chronic consumption of flavanone-rich orange juice is associated with cognitive benefits: An 8-wk, randomized, double-blind, placebo-controlled trial in healthy older adults. The American Journal of Clinical Nutrition, 101(3), 506–514.

    Article  CAS  PubMed  Google Scholar 

  631. Alharbi, M. H., et al. (2016). Flavonoid-rich orange juice is associated with acute improvements in cognitive function in healthy middle-aged males. European Journal of Nutrition, 55(6), 2021–2029.

    Article  CAS  PubMed  Google Scholar 

  632. Cirmi, S., et al. (2016). Neurodegenerative diseases: Might citrus flavonoids play a protective role? Molecules, 21(10), 1312.

    Article  CAS  PubMed Central  Google Scholar 

  633. Elumalai, P., & Lakshmi, S. (2016). Role of quercetin benefits in neurodegeneration. Advances in Neurobiology, 12, 229–245.

    Article  PubMed  Google Scholar 

  634. Ani, P. N., & Abel, H. C. (2018). Nutrient, phytochemical, and antinutrient composition of Citrus maxima fruit juice and peel extract. Food Science & Nutrition, 6(3), 653–658.

    Article  CAS  Google Scholar 

  635. Park, J. H., Lee, M., & Park, E. (2014). Antioxidant activity of orange flesh and peel extracted with various solvents. Preventive Nutrition and Food Science, 19(4), 291–298.

    Article  PubMed  PubMed Central  Google Scholar 

  636. Yoshizaki, N., et al. (2014). Orange peel extract, containing high levels of polymethoxyflavonoid, suppressed UVB-induced COX-2 expression and PGE2 production in HaCaT cells through PPAR-gamma activation. Experimental Dermatology, 23(Suppl 1), 18–22.

    Article  CAS  PubMed  Google Scholar 

  637. Hakim, I. A., Harris, R. B., & Ritenbaugh, C. (2000). Citrus peel use is associated with reduced risk of squamous cell carcinoma of the skin. Nutrition and Cancer, 37(2), 161–168.

    Article  CAS  PubMed  Google Scholar 

  638. Puglia, C., et al. (2014). Protective effect of red orange extract supplementation against UV-induced skin damages: Photoaging and solar lentigines. Journal of Cosmetic Dermatology, 13(2), 151–157.

    Article  PubMed  Google Scholar 

  639. Hussain, K. A., et al. (2015). Antimicrobial effects of citrus sinensis peel extracts against periodontopathic bacteria: An in vitro study. Roczniki Państwowego Zakładu Higieny, 66(2), 173–178.

    CAS  PubMed  Google Scholar 

  640. Dosoky, N. S., & Setzer, W. N. (2018). Biological activities and safety of Citrus spp. essential oils. International Journal of Molecular Sciences, 19(7), 1966.

    Article  CAS  PubMed Central  Google Scholar 

  641. Grobler, S. R. (1991). The effect of a high consumption of citrus fruit and a mixture of other fruits on dental caries in man. Clinical Preventive Dentistry, 13(4), 13–17.

    CAS  PubMed  Google Scholar 

  642. Sovik, J. B., et al. (2015). Sour sweets and acidic beverage consumption are risk indicators for dental erosion. Caries Research, 49(3), 243–250.

    Article  CAS  PubMed  Google Scholar 

  643. Dugrand-Judek, A., et al. (2015). The distribution of coumarins and furanocoumarins in Citrus species closely Matches Citrus phylogeny and reflects the organization of biosynthetic pathways. PLoS One, 10(11), e0142757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  644. Sayre, R. M., & Dowdy, J. C. (2008). The increase in melanoma: Are dietary furocoumarins responsible? Medical Hypotheses, 70(4), 855–859.

    Article  CAS  PubMed  Google Scholar 

  645. Wu, S., et al. (2015). citrus consumption and risk of cutaneous malignant melanoma. Journal of Clinical Oncology, 33(23), 2500–2508.

    Article  PubMed  PubMed Central  Google Scholar 

  646. Qin, K., et al. (2013). Characterization of chemical composition of Pericarpium citri reticulatae volatile oil by comprehensive two-dimensional gas chromatography with high-resolution time-of-flight mass spectrometry. Evidence-based Complementary and Alternative Medicine, 2013, 237541.

    PubMed  PubMed Central  Google Scholar 

  647. Apraj, V. D., & Pandita, N. S. (2016). Evaluation of skin anti-aging potential of citrus reticulata blanco peel. Pharmacognosy Research, 8(3), 160–168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  648. Ho, S. C., & Kuo, C. T. (2014). Hesperidin, nobiletin, and tangeretin are collectively responsible for the anti-neuroinflammatory capacity of tangerine peel (Citri reticulatae pericarpium). Food and Chemical Toxicology, 71, 176–182.

    Article  CAS  PubMed  Google Scholar 

  649. Unno, K., et al. (2011). Beta-cryptoxanthin, plentiful in Japanese mandarin orange, prevents age-related cognitive dysfunction and oxidative damage in senescence-accelerated mouse brain. Biological & Pharmaceutical Bulletin, 34(3), 311–317.

    Article  CAS  Google Scholar 

  650. Mora, J. R., Iwata, M., & von Andrian, U. H. (2008). Vitamin effects on the immune system: Vitamins A and D take centre stage. Nature Reviews. Immunology, 8(9), 685–698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  651. Chouhan, S., Sharma, K., & Guleria, S. (2017). Antimicrobial activity of some essential oils-present status and future perspectives. Medicines (Basel), 4(3), 58.

    Article  CAS  Google Scholar 

  652. Orchard, A., & van Vuuren, S. (2017). Commercial essential oils as potential antimicrobials to treat skin diseases. Evidence-Based Complementary and Alternative Medicine, 2017, 4517971.

    Article  PubMed  PubMed Central  Google Scholar 

  653. Swamy, M. K., Akhtar, M. S., & Sinniah, U. R. (2016). Antimicrobial properties of plant essential oils against human pathogens and their mode of action: An updated review. Evidence-Based Complementary and Alternative Medicine, 2016, 21.

    Article  Google Scholar 

  654. Yap, P. S., et al. (2014). Essential oils, a new horizon in combating bacterial antibiotic resistance. The Open Microbiology Journal, 8, 6–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  655. Adukwu, E. C., et al. (2016). Antimicrobial activity, cytotoxicity and chemical analysis of lemongrass essential oil (Cymbopogon flexuosus) and pure citral. Applied Microbiology and Biotechnology, 100(22), 9619–9627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  656. Chang, Y.-Y., Lin, C.-L., & Chang, L.-Y. (2017). The effects of aromatherapy massage on sleep quality of nurses on monthly rotating night shifts. Evidence-Based Complementary and Alternative Medicine, 2017, 8.

    Google Scholar 

  657. Choi, S. Y., et al. (2014). Effects of inhalation of essential oil of Citrus aurantium L. var. amara on menopausal symptoms, stress, and estrogen in postmenopausal women: A randomized controlled trial. Evidence-Based Complementary and Alternative Medicine, 2014, 7.

    Google Scholar 

  658. Sanchez-Vidana, D. I., et al. (2017). The effectiveness of aromatherapy for depressive symptoms: A systematic review. Evidence-based Complementary and Alternative Medicine, 2017, 5869315.

    PubMed  PubMed Central  Google Scholar 

  659. Brescoll, J., & Daveluy, S. (2015). A review of vitamin B12 in dermatology. American Journal of Clinical Dermatology, 16(1), 27–33.

    Article  PubMed  Google Scholar 

  660. Wang, E. T. (2008). Anaphylaxis caused by tangerine seeds but not tangerine fruit. Annals of Allergy, Asthma & Immunology, 101(5), 553–554.

    Article  Google Scholar 

  661. Fujioka, K., et al. (2006). The effects of grapefruit on weight and insulin resistance: Relationship to the metabolic syndrome. Journal of Medicinal Food, 9(1), 49–54.

    Article  CAS  PubMed  Google Scholar 

  662. Stelmach-Mardas, M., et al. (2016). Link between food energy density and body weight changes in obese adults. Nutrients, 8(4), 229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  663. Kristensen, M., & Jensen, M. G. (2011). Dietary fibres in the regulation of appetite and food intake. Importance of viscosity. Appetite, 56(1), 65–70.

    Article  CAS  PubMed  Google Scholar 

  664. Champagne, C. M., et al. (2011). Dietary intakes associated with successful weight loss and maintenance during the Weight Loss Maintenance trial. Journal of the American Dietetic Association, 111(12), 1826–1835.

    Article  PubMed  PubMed Central  Google Scholar 

  665. Onakpoya, I., et al. (2017). The effect of grapefruits (Citrus paradisi) on body weight and cardiovascular risk factors: A systematic review and meta-analysis of randomized clinical trials. Critical Reviews in Food Science and Nutrition, 57(3), 602–612.

    Article  CAS  PubMed  Google Scholar 

  666. Dow, C. A., et al. (2012). The effects of daily consumption of grapefruit on body weight, lipids, and blood pressure in healthy, overweight adults. Metabolism, 61(7), 1026–1035.

    Article  CAS  PubMed  Google Scholar 

  667. Silver, H. J., Dietrich, M. S., & Niswender, K. D. (2011). Effects of grapefruit, grapefruit juice and water preloads on energy balance, weight loss, body composition, and cardiometabolic risk in free-living obese adults. Nutrition & Metabolism (London), 8(1), 8.

    Article  Google Scholar 

  668. Boeing, H., et al. (2012). Critical review: Vegetables and fruit in the prevention of chronic diseases. European Journal of Nutrition, 51(6), 637–663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  669. Wilcox, G. (2005). Insulin and insulin resistance. Clinical Biochemist Reviews, 26(2), 19–39.

    PubMed Central  Google Scholar 

  670. Laville, M., & Nazare, J. A. (2009). Diabetes, insulin resistance and sugars. Obesity Reviews, 10(Suppl 1), 24–33.

    Article  CAS  PubMed  Google Scholar 

  671. Li, S., et al. (2015). Fruit intake decreases risk of incident type 2 diabetes: An updated meta-analysis. Endocrine, 48(2), 454–460.

    Article  CAS  PubMed  Google Scholar 

  672. Li, M., et al. (2014). Fruit and vegetable intake and risk of type 2 diabetes mellitus: Meta-analysis of prospective cohort studies. BMJ Open, 4(11), e005497.

    Article  PubMed  PubMed Central  Google Scholar 

  673. Gorinstein, S., et al. (2006). Red grapefruit positively influences serum triglyceride level in patients suffering from coronary atherosclerosis: Studies in vitro and in humans. Journal of Agricultural and Food Chemistry, 54(5), 1887–1892.

    Article  CAS  PubMed  Google Scholar 

  674. Cassidy, A., et al. (2012). Dietary flavonoids and risk of stroke in women. Stroke, 43(4), 946–951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  675. Guo, S., & Dipietro, L. A. (2010). Factors affecting wound healing. Journal of Dental Research, 89(3), 219–229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  676. Han, Y. Y., et al. (2015). Diet and asthma: An update. Current Opinion in Allergy and Clinical Immunology, 15(4), 369–374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  677. Greenblatt, D. J., et al. (2012). Mechanism-based inhibition of human cytochrome P450-3A activity by grapefruit hybrids having low furanocoumarin content. Xenobiotica, 42(12), 1163–1169.

    Article  CAS  PubMed  Google Scholar 

  678. Seden, K., et al. (2010). Grapefruit-drug interactions. Drugs, 70(18), 2373–2407.

    Article  CAS  PubMed  Google Scholar 

  679. Bailey, D. G., Dresser, G., & Arnold, J. M. O. (2013). Grapefruit–medication interactions: Forbidden fruit or avoidable consequences? Cmaj, 185(4), 309–316.

    Article  PubMed  PubMed Central  Google Scholar 

  680. SM, H. (2017). Grapefruit juice and some drugs don’t mix. 2017 July 18, cited 2018, Retrieved from https://www.fda.gov/ForConsumers/ConsumerUpdates/ucm292276.htm

  681. Lissera, R. G., Luna Maldonado, E. R., & Battellino, L. J. (1998). In vitro erosive capacity of some fruit juices and soft or low alcoholic strength beverages on human teeth. Acta Odontológica Latinoamericana, 11(1), 55–71.

    CAS  PubMed  Google Scholar 

  682. Jequier, E., & Constant, F. (2010). Water as an essential nutrient: The physiological basis of hydration. European Journal of Clinical Nutrition, 64(2), 115–123.

    Article  CAS  PubMed  Google Scholar 

  683. Murray, B. (2007). Hydration and physical performance. Journal of the American College of Nutrition, 26(5 Suppl), 542s–548s.

    Article  PubMed  Google Scholar 

  684. Keller, U., et al. (2003). Effects of changes in hydration on protein, glucose and lipid metabolism in man: Impact on health. European Journal of Clinical Nutrition, 57(Suppl 2), S69–S74.

    Article  CAS  PubMed  Google Scholar 

  685. Guelinckx, I., et al. (2016). Contribution of water from food and fluids to total water intake: Analysis of a French and UK population surveys. Nutrients, 8(10), 630.

    Article  PubMed Central  Google Scholar 

  686. Montenegro-Bethancourt, G., Johner, S. A., & Remer, T. (2013). Contribution of fruit and vegetable intake to hydration status in schoolchildren. The American Journal of Clinical Nutrition, 98(4), 1103–1112.

    Article  CAS  PubMed  Google Scholar 

  687. Mauskop, A., & Varughese, J. (2012). Why all migraine patients should be treated with magnesium. Journal of Neural Transmission (Vienna), 119(5), 575–579.

    Article  CAS  Google Scholar 

  688. Mukherjee, P. K., et al. (2013). Phytochemical and therapeutic potential of cucumber. Fitoterapia, 84, 227–236.

    Article  CAS  PubMed  Google Scholar 

  689. Arnaud, M. J. (2003). Mild dehydration: A risk factor of constipation? European Journal of Clinical Nutrition, 57(Suppl 2), S88–S95.

    Article  PubMed  Google Scholar 

  690. Popkin, B. M., D’Anci, K. E., & Rosenberg, I. H. (2010). Water, hydration, and health. Nutrition Reviews, 68(8), 439–458.

    Article  PubMed  Google Scholar 

  691. Xu, L., et al. (2014). Clinical benefits after soluble dietary fiber supplementation: A randomized clinical trial in adults with slow-transit constipation. Zhonghua Yi Xue Za Zhi, 94(48), 3813–3816.

    CAS  PubMed  Google Scholar 

  692. Ravichandran, R., et al. (2013). Hierarchical mesoporous silica nanofibers as multifunctional scaffolds for bone tissue regeneration. Journal of Biomaterials Science. Polymer Edition, 24(17), 1988–2005.

    Article  CAS  PubMed  Google Scholar 

  693. Wright, C. I., et al. (2007). Herbal medicines as diuretics: A review of the scientific evidence. Journal of Ethnopharmacology, 114(1), 1–31.

    Article  CAS  PubMed  Google Scholar 

  694. Roman-Ramos, R., Flores-Saenz, J. L., & Alarcon-Aguilar, F. J. (1995). Anti-hyperglycemic effect of some edible plants. Journal of Ethnopharmacology, 48(1), 25–32.

    Article  CAS  PubMed  Google Scholar 

  695. Dixit, Y., & Kar, A. (2010). Protective role of three vegetable peels in alloxan induced diabetes mellitus in male mice. Plant Foods for Human Nutrition, 65(3), 284–289.

    Article  CAS  PubMed  Google Scholar 

  696. Heidari, H., et al. (2016). Protective mechanisms of Cucumis sativus in diabetes-related models of oxidative stress and carbonyl stress. BioImpacts, 6(1), 33–39.

    Article  PubMed  PubMed Central  Google Scholar 

  697. Kumar, D., et al. (2010). Free radical scavenging and analgesic activities of Cucumis sativus L. fruit extract. Journal of Young Pharmacists, 2(4), 365–368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  698. Ji, L., et al. (2015). In Vivo antioxidant properties of lotus root and cucumber: A pilot comparative study in aged subjects. The Journal of Nutrition, Health & Aging, 19(7), 765–770.

    Article  CAS  Google Scholar 

  699. Rios, J. L., et al. (2012). Cucurbitacins as inducers of cell death and a rich source of potential anticancer compounds. Current Pharmaceutical Design, 18(12), 1663–1676.

    Article  CAS  PubMed  Google Scholar 

  700. Maher, P. (2009). Modulation of multiple pathways involved in the maintenance of neuronal function during aging by fisetin. Genes & Nutrition, 4(4), 297–307.

    Article  CAS  Google Scholar 

  701. Ammar, S., et al. (2015). Assessment of the distribution of phenolic compounds and contribution to the antioxidant activity in Tunisian fig leaves, fruits, skins and pulps using mass spectrometry-based analysis. Food & Function, 6(12), 3663–3677.

    Article  CAS  Google Scholar 

  702. Khare, C. P. (2004). Indian herbal remedies (pp. 213–227). Berlin: Springer.

    Book  Google Scholar 

  703. Joseph, B., & Raj, J. (2010). Pharmacognostic and phytochemical properties of Ficus carica Linn –An overview. International Journal of Pharmtech Research, 3, 8–12.

    Google Scholar 

  704. Lim, T. K. (2012). Edible medicinal and non-medicinal plants (Vol. 1). Dordrecht: Springer.

    Book  Google Scholar 

  705. Perez, C., Canal, J. R., & Torres, M. D. (2003). Experimental diabetes treated with ficus carica extract: Effect on oxidative stress parameters. Acta Diabetologica, 40(1), 3–8.

    Article  CAS  PubMed  Google Scholar 

  706. Irudayaraj, S. S., et al. (2016). Antioxidant, antilipidemic and antidiabetic effects of ficusin with their effects on GLUT4 translocation and PPARgamma expression in type 2 diabetic rats. Chemico-Biological Interactions, 256, 85–93.

    Article  CAS  PubMed  Google Scholar 

  707. Badgujar, S. B., et al. (2014). Traditional uses, phytochemistry and pharmacology of Ficus carica: A review. Pharmaceutical Biology, 52(11), 1487–1503.

    Article  CAS  PubMed  Google Scholar 

  708. Mawa, S., Husain, K., & Jantan, I. (2013). Ficus carica L. (Moraceae): Phytochemistry, traditional uses and biological activities. Evidence-based Complementary and Alternative Medicine, 2013, 8.

    Article  Google Scholar 

  709. Vinson, J. A., et al. (2005). Dried fruits: Excellent in vitro and in vivo antioxidants. Journal of the American College of Nutrition, 24(1), 44–50.

    Article  PubMed  Google Scholar 

  710. Slatnar, A., et al. (2011). Effect of drying of figs (Ficus carica L.) on the contents of sugars, organic acids, and phenolic compounds. Journal of Agricultural and Food Chemistry, 59(21), 11696–11702.

    Article  CAS  PubMed  Google Scholar 

  711. Russo, F., et al. (2014). Phenolic compounds in fresh and dried figs from Cilento (Italy), by considering breba crop and full crop, in comparison to Turkish and Greek dried figs. Journal of Food Science, 79(7), C1278–C1284.

    Article  CAS  PubMed  Google Scholar 

  712. Vijaya Kumar Reddy, C., Dande, S., & Manchala, R. (2010). Antioxidant activity of fresh and dry fruits commonly consumed in India. Food Research International, 43, 285–288.

    Article  CAS  Google Scholar 

  713. Jing, L., et al. (2015). Tirucallane-type triterpenoids from the fruit of Ficus carica and their cytotoxic activity. Chemical and Pharmaceutical Bulletin, 63(3), 237–243.

    Article  CAS  PubMed  Google Scholar 

  714. Conforti, F., et al. (2012). Evaluation of phototoxic potential of aerial components of the fig tree against human melanoma. Cell Proliferation, 45(3), 279–285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  715. Khan, H., Akhtar, N., & Ali, A. (2014). Effects of cream containing Ficus carica L. fruit extract on skin parameters: In vivo evaluation. Indian Journal of Pharmaceutical Sciences, 76(6), 560–564.

    CAS  PubMed  PubMed Central  Google Scholar 

  716. Yang, X., et al. (2015). The effects of Ficus carica polysaccharide on immune response and expression of some immune-related genes in grass carp, Ctenopharyngodon idella. Fish & Shellfish Immunology, 42(1), 132–137.

    Article  CAS  Google Scholar 

  717. Jeong, M.-R., Kim, H.-Y., & Cha, J.-D. (2009). Antimicrobial activity of methanol extract from ficus carica leaves against oral bacteria. Journal of Bacteriology and Virology, 39, 97–102.

    Article  CAS  Google Scholar 

  718. Keskin, D., et al. (2012). Phytochemical analysis and antimicrobial activity of different extracts of fig leaves (Ficus carica L.) from West Anatolia against some pathogenic microorganisms. Journal of Pure and Applied Microbiology, 6, 1105–1110.

    Google Scholar 

  719. Al Askari, G., et al. (2013). In vitro antimicrobial activity of aqueous and ethanolic extracts of leaves of Ficus carica collected from five different regions of Morocco. Journal of Materials and Environmental Science, 4, 33–38.

    Google Scholar 

  720. Serraclara, A., et al. (1998). Hypoglycemic action of an oral fig-leaf decoction in type-I diabetic patients. Diabetes Research and Clinical Practice, 39(1), 19–22.

    Article  CAS  PubMed  Google Scholar 

  721. Hemmer, W., et al. (2010). Identification of Bet v 1-related allergens in fig and other Moraceae fruits. Clinical and Experimental Allergy, 40(4), 679–687.

    Article  CAS  PubMed  Google Scholar 

  722. Pezzuto, J. M. (2008). Grapes and human health: A perspective. Journal of Agricultural and Food Chemistry, 56(16), 6777–6784.

    Article  CAS  PubMed  Google Scholar 

  723. Georgiev, V., Ananga, A., & Tsolova, V. (2014). Recent advances and uses of grape flavonoids as nutraceuticals. Nutrients, 6(1), 391–415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  724. Pisoschi, A. M., & Pop, A. (2015). The role of antioxidants in the chemistry of oxidative stress: A review. European Journal of Medicinal Chemistry, 97, 55–74.

    Article  CAS  PubMed  Google Scholar 

  725. Cantos, E., Espin, J. C., & Tomas-Barberan, F. A. (2002). Varietal differences among the polyphenol profiles of seven table grape cultivars studied by LC-DAD-MS-MS. Journal of Agricultural and Food Chemistry, 50(20), 5691–5696.

    Article  CAS  PubMed  Google Scholar 

  726. Singh, C. K., Liu, X., & Ahmad, N. (2015). Resveratrol, in its natural combination in whole grape, for health promotion and disease management. Annals of the New York Academy of Sciences, 1348(1), 150–160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  727. Di Lorenzo, C., et al. (2016). Evaluation of the anti-inflammatory activity of raisins (Vitis vinifera L.) in human gastric epithelial cells: A comparative study. International Journal of Molecular Sciences, 17(7), 1156.

    Article  CAS  PubMed Central  Google Scholar 

  728. Barona, J., et al. (2012). Grape consumption increases anti-inflammatory markers and upregulates peripheral nitric oxide synthase in the absence of dyslipidemias in men with metabolic syndrome. Nutrients, 4(12), 1945–1957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  729. Greenspan, P., et al. (2005). Antiinflammatory properties of the muscadine grape (Vitis rotundifolia). Journal of Agricultural and Food Chemistry, 53(22), 8481–8484.

    Article  CAS  PubMed  Google Scholar 

  730. Berman, A. Y., et al. (2017). The therapeutic potential of resveratrol: A review of clinical trials. NPJ Precision Oncology, 1, 35.

    Article  PubMed  PubMed Central  Google Scholar 

  731. Smoliga, J. M., Baur, J. A., & Hausenblas, H. A. (2011). Resveratrol and health--a comprehensive review of human clinical trials. Molecular Nutrition & Food Research, 55(8), 1129–1141.

    Article  CAS  Google Scholar 

  732. Zhou, K., & Raffoul, J. J. (2012). Potential anticancer properties of grape antioxidants. Journal of Oncology, 2012, 803294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  733. Pandey, K. B., & Rizvi, S. I. (2014). Role of red grape polyphenols as antidiabetic agents. Integrative Medicine Research, 3(3), 119–125.

    Article  PubMed  PubMed Central  Google Scholar 

  734. Dohadwala, M. M., & Vita, J. A. (2009). Grapes and cardiovascular disease. The Journal of Nutrition, 139(9), 1788s–1793s.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  735. McCubrey, J. A., et al. (2017). Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs. Aging (Albany NY), 9(6), 1477–1536.

    Article  CAS  Google Scholar 

  736. Wahl, D., et al. (2018). Future directions of resveratrol research. Nutrition and Healthy Aging, 4(4), 287–290.

    Article  PubMed  PubMed Central  Google Scholar 

  737. Holcombe, R. F., et al. (2015). Effects of a grape-supplemented diet on proliferation and Wnt signaling in the colonic mucosa are greatest for those over age 50 and with high arginine consumption. Nutrition Journal, 14, 62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  738. Zhang, C., et al. (2017). Grape seed proanthocyanidins induce mitochondrial pathway-mediated apoptosis in human colorectal carcinoma cells. Oncology Letters, 14(5), 5853–5860.

    PubMed  PubMed Central  Google Scholar 

  739. Valenzuela, M., et al. (2018). Autumn royal and ribier grape juice extracts reduced viability and metastatic potential of colon cancer cells. Evidence-based Complementary and Alternative Medicine, 2018, 2517080.

    Article  PubMed  PubMed Central  Google Scholar 

  740. Luan, Y. Y., et al. (2015). Effect of grape seed proanthocyanidins on tumor vasculogenic mimicry in human triple-negative breast cancer cells. Asian Pacific Journal of Cancer Prevention, 16(2), 531–535.

    Article  PubMed  Google Scholar 

  741. Dinicola, S., et al. (2014). Grape seed extract suppresses MDA-MB231 breast cancer cell migration and invasion. European Journal of Nutrition, 53(2), 421–431.

    Article  PubMed  Google Scholar 

  742. Sun, T., et al. (2012). Antitumor and antimetastatic activities of grape skin polyphenols in a murine model of breast cancer. Food and Chemical Toxicology, 50(10), 3462–3467.

    Article  CAS  PubMed  Google Scholar 

  743. Signorelli, P., et al. (2015). Natural grape extracts regulate colon cancer cells malignancy. Nutrition and Cancer, 67(3), 494–503.

    Article  CAS  PubMed  Google Scholar 

  744. Burton, L. J., et al. (2015). Muscadine grape skin extract can antagonize Snail-cathepsin L-mediated invasion, migration and osteoclastogenesis in prostate and breast cancer cells. Carcinogenesis, 36(9), 1019–1027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  745. Gescher, A., Steward, W. P., & Brown, K. (2013). Resveratrol in the management of human cancer: How strong is the clinical evidence? Annals of the New York Academy of Sciences, 1290, 12–20.

    Article  CAS  PubMed  Google Scholar 

  746. Dybkowska, E., et al. (2018). The occurrence of resveratrol in foodstuffs and its potential for supporting cancer prevention and treatment. A review. Roczniki Państwowego Zakładu Higieny, 69(1), 5–14.

    CAS  PubMed  Google Scholar 

  747. Wang, L., et al. (2013). Resveratrols in grape berry skins and leaves in vitis germplasm. PLoS One, 8(4), e61642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  748. Srivastava, S., et al. (2016). Quercetin, a natural flavonoid interacts with DNA, arrests cell cycle and causes tumor regression by activating mitochondrial pathway of apoptosis. Scientific Reports, 6, 24049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  749. Singh, C. K., et al. (2016). Combination chemoprevention with grape antioxidants. Molecular Nutrition & Food Research, 60(6), 1406–1415.

    Article  CAS  Google Scholar 

  750. Vallianou, N. G., Evangelopoulos, A., & Kazazis, C. (2013). Resveratrol and diabetes. The Review of Diabetic Studies, 10(4), 236–242.

    Article  PubMed  Google Scholar 

  751. Urquiaga, I., et al. (2015). Wine grape pomace flour improves blood pressure, fasting glucose and protein damage in humans: A randomized controlled trial. Biological Research, 48, 49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  752. Sin, T. K., Yung, B. Y., & Siu, P. M. (2015). Modulation of SIRT1-Foxo1 signaling axis by resveratrol: Implications in skeletal muscle aging and insulin resistance. Cellular Physiology and Biochemistry, 35(2), 541–552.

    Article  CAS  PubMed  Google Scholar 

  753. Akaberi, M., & Hosseinzadeh, H. (2016). Grapes (Vitis vinifera) as a potential candidate for the therapy of the metabolic syndrome. Phytotherapy Research, 30(4), 540–556.

    Article  CAS  PubMed  Google Scholar 

  754. Yin, W., et al. (2015). Anti-inflammatory effects of grape seed procyanidin B2 on a diabetic pancreas. Food & Function, 6(9), 3065–3071.

    Article  CAS  Google Scholar 

  755. Zunino, S. (2009). Type 2 diabetes and glycemic response to grapes or grape products. The Journal of Nutrition, 139(9), 1794s–1800s.

    Article  CAS  PubMed  Google Scholar 

  756. Riccioni, G., et al. (2015). Resveratrol and anti-atherogenic effects. International Journal of Food Sciences and Nutrition, 66(6), 603–610.

    Article  CAS  PubMed  Google Scholar 

  757. Murillo, A. G., & Fernandez, M. L. (2017). The relevance of dietary polyphenols in cardiovascular protection. Current Pharmaceutical Design, 23(17), 2444–2452.

    Article  CAS  PubMed  Google Scholar 

  758. Rahbar, A. R., Mahmoudabadi, M. M., & Islam, M. S. (2015). Comparative effects of red and white grapes on oxidative markers and lipidemic parameters in adult hypercholesterolemic humans. Food & Function, 6(6), 1992–1998.

    Article  CAS  Google Scholar 

  759. Xia, E. Q., et al. (2010). Biological activities of polyphenols from grapes. International Journal of Molecular Sciences, 11(2), 622–646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  760. Iacopini, P., et al. (2008). Catechin, epicatechin, quercetin, rutin and resveratrol in red grape: Content, in vitro antioxidant activity and interactions. Journal of Food Composition and Analysis, 21(8), 589–598.

    Article  CAS  Google Scholar 

  761. Lv, L., et al. (2018). Rutin inhibits coronary heart disease through ERK1/2 and Akt signaling in a porcine model. Experimental and Therapeutic Medicine, 15(1), 506–512.

    CAS  PubMed  Google Scholar 

  762. Flaumenhaft, R. (2013). Protein disulfide isomerase as an antithrombotic target. Trends in Cardiovascular Medicine, 23(7), 264–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  763. Yang, Q., et al. (2011). Sodium and potassium intake and mortality among US adults: Prospective data from the Third National Health and Nutrition Examination Survey. Archives of Internal Medicine, 171(13), 1183–1191.

    Article  PubMed  Google Scholar 

  764. Pons, Z., et al. (2016). Acute administration of single oral dose of grape seed polyphenols restores blood pressure in a rat model of metabolic syndrome: Role of nitric oxide and prostacyclin. European Journal of Nutrition, 55(2), 749–758.

    Article  CAS  PubMed  Google Scholar 

  765. Abu-Amero, K. K., Kondkar, A. A., & Chalam, K. V. (2016). Resveratrol and ophthalmic diseases. Nutrients, 8(4), 200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  766. Patel, A. K., et al. (2016). Protective effects of a grape-supplemented diet in a mouse model of retinal degeneration. Nutrition, 32(3), 384–390.

    Article  CAS  PubMed  Google Scholar 

  767. Chan, C. M., et al. (2015). Protective effects of resveratrol against UVA-induced damage in ARPE19 cells. International Journal of Molecular Sciences, 16(3), 5789–5802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  768. Porquet, D., et al. (2013). Dietary resveratrol prevents Alzheimer’s markers and increases life span in SAMP8. Age (Dordrecht, Netherlands), 35(5), 1851–1865.

    Article  CAS  Google Scholar 

  769. Haskell-Ramsay, C. F., et al. (2017). Cognitive and mood improvements following acute supplementation with purple grape juice in healthy young adults. European Journal of Nutrition, 56(8), 2621–2631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  770. Kodali, M., et al. (2015). Resveratrol prevents age-related memory and mood dysfunction with increased hippocampal neurogenesis and microvasculature, and reduced glial activation. Scientific Reports, 5, 8075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  771. Calapai, G., et al. (2017). A randomized, double-blinded, clinical trial on effects of a vitis vinifera extract on cognitive function in healthy older adults. Frontiers in Pharmacology, 8, 776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  772. Krikorian, R., et al. (2010). Concord grape juice supplementation improves memory function in older adults with mild cognitive impairment. British Journal of Nutrition, 103(5), 730–734.

    Article  CAS  Google Scholar 

  773. Yadav, D., et al. (2015). Antimicrobial properties of black grape (Vitis vinifera L.) peel extracts against antibiotic-resistant pathogenic bacteria and toxin producing molds. Indian Journal of Pharmacology, 47(6), 663–667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  774. Correia, A. C., & Jordao, A. M. (2015). Antioxidant capacity, radical scavenger activity, lipid oxidation protection analysis and antimicrobial activity of red grape extracts from different varieties cultivated in Portugal. Natural Product Research, 29(5), 438–440.

    Article  CAS  PubMed  Google Scholar 

  775. Munoz-Gonzalez, I., et al. (2014). Red wine and oenological extracts display antimicrobial effects in an oral bacteria biofilm model. Journal of Agricultural and Food Chemistry, 62(20), 4731–4737.

    Article  CAS  PubMed  Google Scholar 

  776. Berardi, V., et al. (2009). Resveratrol exhibits a strong cytotoxic activity in cultured cells and has an antiviral action against polyomavirus: Potential clinical use. Journal of Experimental & Clinical Cancer Research, 28, 96.

    Article  CAS  Google Scholar 

  777. Ma, D. S. L., et al. (2018). Resveratrol-potential antibacterial agent against foodborne pathogens. Frontiers in Pharmacology, 9, 102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  778. Bekhit Ael, D., et al. (2011). Antioxidant activities, sensory and anti-influenza activity of grape skin tea infusion. Food Chemistry, 129(3), 837–845.

    Article  CAS  Google Scholar 

  779. Jayaprakasha, G. K., Selvi, T., & Sakariah, K. K. (2003). Antibacterial and antioxidant activities of grape (Vitis vinifera) seed extracts. Food Research International, 36(2), 117–122.

    Article  CAS  Google Scholar 

  780. Hemmati, A. A., et al. (2015). The topical effect of grape seed extract 2% cream on surgery wound healing. Global Journal of Health Science, 7, 52–59.

    Article  Google Scholar 

  781. Richardson, D. P., Ansell, J., & Drummond, L. N. (2018). The nutritional and health attributes of kiwifruit: A review. European Journal of Nutrition, 57(8), 2659–2676.

    Article  PubMed  PubMed Central  Google Scholar 

  782. Xia, L., & Ng, T. B. (2004). Actinchinin, a novel antifungal protein from the gold kiwi fruit. Peptides, 25(7), 1093–1098.

    Article  CAS  PubMed  Google Scholar 

  783. Basile, A., et al. (1997). Antibacterial activity in Actinidia chinensis, Feijoa sellowiana and Aberia caffra. International Journal of Antimicrobial Agents, 8(3), 199–203.

    Article  CAS  PubMed  Google Scholar 

  784. Kaur, L., et al. (2010). Actinidin enhances gastric protein digestion as assessed using an in vitro gastric digestion model. Journal of Agricultural and Food Chemistry, 58(8), 5068–5073.

    Article  CAS  PubMed  Google Scholar 

  785. Morimoto, K., et al. (2006). Effects of high concentration of salts on the esterase activity and structure of a kiwifruit peptidase, actinidain. Journal of Biochemistry, 139(6), 1065–1071.

    Article  CAS  PubMed  Google Scholar 

  786. Stonehouse, W., et al. (2012). Kiwifruit: Our daily prescription for health. Canadian Journal of Physiology and Pharmacology, 91(6), 442–447.

    Article  CAS  Google Scholar 

  787. Hunter, D. C., et al. (2012). Consumption of gold kiwifruit reduces severity and duration of selected upper respiratory tract infection symptoms and increases plasma vitamin C concentration in healthy older adults. British Journal of Nutrition, 108(7), 1235–1245.

    Article  CAS  Google Scholar 

  788. Forastiere, F., et al. (2000). Consumption of fresh fruit rich in vitamin C and wheezing symptoms in children. SIDRIA Collaborative Group, Italy (Italian Studies on Respiratory Disorders in Children and the Environment). Thorax, 55(4), 283–288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  789. Iwasawa, H., et al. (2011). Anti-oxidant effects of kiwi fruit in vitro and in vivo. Biological & Pharmaceutical Bulletin, 34(1), 128–134.

    Article  CAS  Google Scholar 

  790. Brevik, A., et al. (2011). Supplementation of a western diet with golden kiwifruits (Actinidia chinensis var.‘Hort 16A’:) effects on biomarkers of oxidation damage and antioxidant protection. Nutrition Journal, 10, 54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  791. Collins, B. H., et al. (2001). Kiwifruit protects against oxidative DNA damage in human cells and in vitro. Nutrition and Cancer, 39(1), 148–153.

    Article  CAS  PubMed  Google Scholar 

  792. Beck, K., et al. (2011). Gold kiwifruit consumed with an iron-fortified breakfast cereal meal improves iron status in women with low iron stores: A 16-week randomised controlled trial. British Journal of Nutrition, 105(1), 101–109.

    Article  CAS  Google Scholar 

  793. Deters, A. M., Schroder, K. R., & Hensel, A. (2005). Kiwi fruit (Actinidia chinensis L.) polysaccharides exert stimulating effects on cell proliferation via enhanced growth factor receptors, energy production, and collagen synthesis of human keratinocytes, fibroblasts, and skin equivalents. Journal of Cellular Physiology, 202(3), 717–722.

    Article  CAS  PubMed  Google Scholar 

  794. Boyera, N., Galey, I., & Bernard, B. A. (1998). Effect of vitamin C and its derivatives on collagen synthesis and cross-linking by normal human fibroblasts. International Journal of Cosmetic Science, 20(3), 151–158.

    Article  CAS  PubMed  Google Scholar 

  795. Juturu, V., Bowman, J. P., & Deshpande, J. (2016). Overall skin tone and skin-lightening-improving effects with oral supplementation of lutein and zeaxanthin isomers: A double-blind, placebo-controlled clinical trial. Clinical, Cosmetic and Investigational Dermatology, 9, 325–332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  796. Calvo, M. M. (2005). Lutein: A valuable ingredient of fruit and vegetables. Critical Reviews in Food Science and Nutrition, 45(7-8), 671–696.

    Article  CAS  PubMed  Google Scholar 

  797. Nishiyama, I., Fukuda, T., & Oota, T. (2005). Genotypic differences in chlorophyll, lutein, and beta-carotene contents in the fruits of actinidia species. Journal of Agricultural and Food Chemistry, 53(16), 6403–6407.

    Article  CAS  PubMed  Google Scholar 

  798. Cho, E., et al. (2004). Prospective study of intake of fruits, vegetables, vitamins, and carotenoids and risk of age-related maculopathy. Archives of Ophthalmology, 122(6), 883–892.

    Article  PubMed  Google Scholar 

  799. Cheng, Q. L., et al. (2015). 2beta, 3beta, 23-trihydroxy-urs-12-ene-28-olic acid (TUA) isolated from Actinidia chinensis Radix inhibits NCI-H460 cell proliferation by decreasing NF-kappaB expression. Chemico-Biological Interactions, 240, 1–11.

    Article  CAS  PubMed  Google Scholar 

  800. Zuo, L. L., et al. (2012). Evaluation of antioxidant and antiproliferative properties of three Actinidia (Actinidia kolomikta, Actinidia arguta, Actinidia chinensis) extracts in vitro. International Journal of Molecular Sciences, 13(5), 5506–5518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  801. Motohashi, N., et al. (2002). Cancer prevention and therapy with kiwifruit in Chinese folklore medicine: A study of kiwifruit extracts. Journal of Ethnopharmacology, 81(3), 357–364.

    Article  PubMed  Google Scholar 

  802. Lin, P. F. (1988). Antitumor effect of actinidia chinensis polysaccharide on murine tumor. Zhonghua Zhong Liu Za Zhi, 10(6), 441–444.

    CAS  PubMed  Google Scholar 

  803. Svendsen, M., et al. (2015). The effect of kiwifruit consumption on blood pressure in subjects with moderately elevated blood pressure: A randomized, controlled study. Blood Pressure, 24(1), 48–54.

    Article  CAS  PubMed  Google Scholar 

  804. McDonough, A. A., & Nguyen, M. T. (2012). How does potassium supplementation lower blood pressure? American Journal of Physiology - Renal Physiology, 302(9), F1224–F1225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  805. Recio-Rodriguez, J. I., et al. (2015). Effects of kiwi consumption on plasma lipids, fibrinogen and insulin resistance in the context of a normal diet. Nutrition Journal, 14, 97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  806. Duttaroy, A. K., & Jorgensen, A. (2004). Effects of kiwi fruit consumption on platelet aggregation and plasma lipids in healthy human volunteers. Platelets, 15(5), 287–292.

    Article  CAS  PubMed  Google Scholar 

  807. A Monro, J. (2013). Chapter Fourteen. In Kiwifruit, carbohydrate availability, and the glycemic response (Vol. 68). Amsterdam: Academic Press.

    Google Scholar 

  808. Katsumata, S., et al. (2015). Effect of kiwifruit on bone resorption in ovariectomized mice. Journal of Nutritional Science and Vitaminology (Tokyo), 61(4), 332–337.

    Article  CAS  Google Scholar 

  809. Adams, J., & Pepping, J. (2005). Vitamin K in the treatment and prevention of osteoporosis and arterial calcification. American Journal of Health-System Pharmacy, 62(15), 1574–1581.

    Article  CAS  PubMed  Google Scholar 

  810. Feldman, J. M., & Lee, E. M. (1985). Serotonin content of foods: Effect on urinary excretion of 5-hydroxyindoleacetic acid. The American Journal of Clinical Nutrition, 42(4), 639–643.

    Article  CAS  PubMed  Google Scholar 

  811. Lin, H. H., et al. (2011). Effect of kiwifruit consumption on sleep quality in adults with sleep problems. Asia Pacific Journal of Clinical Nutrition, 20(2), 169–174.

    PubMed  Google Scholar 

  812. Young, S. N., & Leyton, M. (2002). The role of serotonin in human mood and social interaction. Insight from altered tryptophan levels. Pharmacology Biochemistry and Behavior, 71(4), 857–865.

    Article  CAS  Google Scholar 

  813. Zarfeshany, A., Asgary, S., & Javanmard, S. H. (2014). Potent health effects of pomegranate. Advanced Biomedical Research, 3, 100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  814. Gil, M. I., et al. (2000). Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. Journal of Agricultural and Food Chemistry, 48(10), 4581–4589.

    Article  CAS  PubMed  Google Scholar 

  815. Akhavan, H., et al. (2015). Phenolic compounds and antioxidant activity of juices from ten Iranian pomegranate cultivars depend on extraction. Journal of Chemistry, 2015, 7.

    Article  CAS  Google Scholar 

  816. Viladomiu, M., et al. (2013). Preventive and prophylactic mechanisms of action of pomegranate bioactive constituents. Evidence-based Complementary and Alternative Medicine, 2013, 18.

    Article  Google Scholar 

  817. Johanningsmeier, S. D., & Harris, G. K. (2011). Pomegranate as a functional food and nutraceutical source. Annual Review of Food Science and Technology, 2, 181–201.

    Article  CAS  PubMed  Google Scholar 

  818. Elnawasany, S. (2018). Clinical Applications of Pomegranate. In Breeding and Health Benefits of Fruit and Nut Crops (p. 127). London: IntechOpen.

    Google Scholar 

  819. Jurenka, J. S. (2008). Therapeutic applications of pomegranate (Punica granatum L.): A review. Alternative Medicine Review, 13(2), 128–144.

    PubMed  Google Scholar 

  820. Boroushaki, M. T., Mollazadeh, H., & Afshari, A. R. (2016). Pomegranate seed oil: A comprehensive review on its therapeutic effects. International Journal of Pharmaceutical Sciences and Research, 7, 430–442.

    CAS  Google Scholar 

  821. Rahmani, A., Ali Alsahli, M., & Abdulrahman Almatroodi, S. (2017). Active constituents of pomegranates (Punica granatum) as potential candidates in the management of health through modulation of biological activities. Pharmacognosy Journal, 9, 689–695.

    Article  CAS  Google Scholar 

  822. Syed, Q. A., et al. (2018). Nutritional and therapeutic properties of pomegranate. Scholarly Journal of Food and Nutrition, 1(4), 115–120.

    Google Scholar 

  823. Rahimi, H. R., Arastoo, M., & Ostad, S. N. (2012). A comprehensive review of Punica granatum (Pomegranate) properties in toxicological, pharmacological, cellular and molecular biology researches. Iranian Journal of Pharmaceutical Research, 11(2), 385–400.

    CAS  PubMed  PubMed Central  Google Scholar 

  824. Heber, D. (2011). Pomegranate Ellagitannins. In I. F. F. Benzie & S. Wachtel-Galor (Eds.), Herbal medicine: Biomolecular and clinical aspects. Boca Raton, FL: CRC Press/Taylor & Francis Llc..

    Google Scholar 

  825. Shabbir, M. A., et al. (2017). Punicic acid: A striking health substance to combat metabolic syndromes in humans. Lipids in Health and Disease, 16(1), 99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  826. Aruna, P., et al. (2016). Health benefits of punicic acid: A review. Comprehensive Reviews in Food Science and Food Safety, 15(1), 16–27.

    Article  CAS  PubMed  Google Scholar 

  827. Danesi, F., & Ferguson, L. R. (2017). Could pomegranate juice help in the control of inflammatory diseases? Nutrients, 9(9), 958.

    Article  CAS  PubMed Central  Google Scholar 

  828. Sohrab, G., et al. (2014). Effects of pomegranate juice consumption on inflammatory markers in patients with type 2 diabetes: A randomized, placebo-controlled trial. Journal of Research in Medical Sciences, 19(3), 215–220.

    PubMed  PubMed Central  Google Scholar 

  829. Colombo, E., Sangiovanni, E., & Dell’agli, M. (2013). A review on the anti-inflammatory activity of pomegranate in the gastrointestinal tract. Evidence-based Complementary and Alternative Medicine, 2013, 247145.

    Article  PubMed  PubMed Central  Google Scholar 

  830. Grossmann, M. E., et al. (2010). Punicic acid is an omega-5 fatty acid capable of inhibiting breast cancer proliferation. International Journal of Oncology, 36(2), 421–426.

    CAS  PubMed  Google Scholar 

  831. Syed, D. N., et al. (2013). Pomegranate extracts and cancer prevention: Molecular and cellular activities. Anti-Cancer Agents in Medicinal Chemistry, 13(8), 1149–1161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  832. Turrini, E., Ferruzzi, L., & Fimognari, C. (2015). Potential effects of pomegranate polyphenols in cancer prevention and therapy. Oxidative Medicine and Cellular Longevity, 2015, 938475–938475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  833. Vlachojannis, C., Zimmermann, B. F., & Chrubasik-Hausmann, S. (2015). Efficacy and safety of pomegranate medicinal products for cancer. Evidence-based Complementary and Alternative Medicine: eCAM, 2015, 258598–258598.

    Article  Google Scholar 

  834. Sharma, P., McClees, S. F., & Afaq, F. (2017). Pomegranate for prevention and treatment of cancer: An update. Molecules (Basel, Switzerland), 22(1), 177.

    Article  CAS  Google Scholar 

  835. Bassiri-Jahromi, S. (2018). Punica granatum (Pomegranate) activity in health promotion and cancer prevention. Oncology Reviews, 12(1), 345–345.

    PubMed  PubMed Central  Google Scholar 

  836. Costantini, S., et al. (2014). Potential anti-inflammatory effects of the hydrophilic fraction of pomegranate (Punica granatum L.) seed oil on breast cancer cell lines. Molecules, 19(6), 8644–8660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  837. Nallanthighal, S., Elmaliki, K. M., & Reliene, R. (2017). Pomegranate extract alters breast cancer stem cell properties in association with inhibition of epithelial-to-mesenchymal transition. Nutrition and Cancer, 69(7), 1088–1098.

    Article  CAS  PubMed  Google Scholar 

  838. Shirode, A. B., et al. (2014). Antiproliferative effects of pomegranate extract in MCF-7 breast cancer cells are associated with reduced DNA repair gene expression and induction of double strand breaks. Molecular Carcinogenesis, 53(6), 458–470.

    Article  CAS  PubMed  Google Scholar 

  839. Klempner, S. J., & Bubley, G. (2012). Complementary and alternative medicines in prostate cancer: From bench to bedside? The Oncologist, 17(6), 830–837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  840. Pantuck, A. J., et al. (2006). Phase II study of pomegranate juice for men with rising prostate-specific antigen following surgery or radiation for prostate cancer. Clinical Cancer Research, 12(13), 4018–4026.

    Article  CAS  PubMed  Google Scholar 

  841. Wang, L., & Martins-Green, M. (2014). Pomegranate and its components as alternative treatment for prostate cancer. International Journal of Molecular Sciences, 15(9), 14949–14966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  842. Paller, C. J., Pantuck, A., & Carducci, M. A. (2017). A review of pomegranate in prostate cancer. Prostate Cancer and Prostatic Diseases, 20(3), 265–270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  843. Paller, C. J., et al. (2013). A randomized phase II study of pomegranate extract for men with rising PSA following initial therapy for localized prostate cancer. Prostate Cancer and Prostatic Diseases, 16(1), 50–55.

    Article  CAS  PubMed  Google Scholar 

  844. Tortora, K., et al. (2018). Pomegranate by-products in colorectal cancer chemoprevention: Effects in Apc-mutated pirc rats and mechanistic studies in vitro and ex vivo. Molecular Nutrition & Food Research, 62(2), 1700401.

    Article  CAS  Google Scholar 

  845. Jaganathan, S. K., et al. (2014). Role of pomegranate and citrus fruit juices in colon cancer prevention. World Journal of Gastroenterology, 20(16), 4618–4625.

    Article  PubMed  PubMed Central  Google Scholar 

  846. Adams, L. S., et al. (2006). Pomegranate juice, total pomegranate ellagitannins, and punicalagin suppress inflammatory cell signaling in colon cancer cells. Journal of Agricultural and Food Chemistry, 54(3), 980–985.

    Article  CAS  PubMed  Google Scholar 

  847. Rasheed, Z., Akhtar, N., & Haqqi, T. M. (2010). Pomegranate extract inhibits the interleukin-1beta-induced activation of MKK-3, p38alpha-MAPK and transcription factor RUNX-2 in human osteoarthritis chondrocytes. Arthritis Research and Therapy, 12(5), R195.

    Article  PubMed  PubMed Central  Google Scholar 

  848. Ahmed, S., et al. (2005). Punica granatum L. extract inhibits IL-1beta-induced expression of matrix metalloproteinases by inhibiting the activation of MAP kinases and NF-kappaB in human chondrocytes in vitro. The Journal of Nutrition, 135(9), 2096–2102.

    Article  CAS  PubMed  Google Scholar 

  849. Shukla, M., et al. (2008). Bioavailable constituents/metabolites of pomegranate (Punica granatum L) preferentially inhibit COX2 activity ex vivo and IL-1beta-induced PGE2 production in human chondrocytes in vitro. Journal of Inflammation (London, England), 5, 9–9.

    Article  CAS  Google Scholar 

  850. Ghoochani, N., et al. (2016). The effect of pomegranate juice on clinical signs, matrix metalloproteinases and antioxidant status in patients with knee osteoarthritis. Journal of the Science of Food and Agriculture, 96(13), 4377–4381.

    Article  CAS  PubMed  Google Scholar 

  851. Shuid, A. N., & Mohamed, I. N. (2013). Pomegranate use to attenuate bone loss in major musculoskeletal diseases: An evidence-based review. Current Drug Targets, 14(13), 1565–1578.

    Article  CAS  PubMed  Google Scholar 

  852. Wang, D., et al. (2018). Vasculoprotective effects of pomegranate (Punica granatum L.). Frontiers in Pharmacology, 9, 544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  853. Stowe, C. B. (2011). The effects of pomegranate juice consumption on blood pressure and cardiovascular health. Complementary Therapies in Clinical Practice, 17(2), 113–115.

    Article  PubMed  Google Scholar 

  854. Sahebkar, A., et al. (2017). Effects of pomegranate juice on blood pressure: A systematic review and meta-analysis of randomized controlled trials. Pharmacological Research, 115, 149–161.

    Article  CAS  PubMed  Google Scholar 

  855. Asgary, S., et al. (2013). Clinical investigation of the acute effects of pomegranate juice on blood pressure and endothelial function in hypertensive individuals. ARYA Atherosclerosis, 9(6), 326–331.

    PubMed  PubMed Central  Google Scholar 

  856. Asgary, S., et al. (2014). Clinical evaluation of blood pressure lowering, endothelial function improving, hypolipidemic and anti-inflammatory effects of pomegranate juice in hypertensive subjects. Phytotherapy Research, 28(2), 193–199.

    Article  CAS  PubMed  Google Scholar 

  857. Mirmiran, P., et al. (2010). Effect of pomegranate seed oil on hyperlipidaemic subjects: A double-blind placebo-controlled clinical trial. British Journal of Nutrition, 104(3), 402–406.

    Article  CAS  Google Scholar 

  858. Al-Jarallah, A., et al. (2013). The effect of pomegranate extract on coronary artery atherosclerosis in SR-BI/APOE double knockout mice. Atherosclerosis, 228(1), 80–89.

    Article  CAS  PubMed  Google Scholar 

  859. Kaplan, M., et al. (2001). Pomegranate juice supplementation to atherosclerotic mice reduces macrophage lipid peroxidation, cellular cholesterol accumulation and development of atherosclerosis. The Journal of Nutrition, 131(8), 2082–2089.

    Article  CAS  PubMed  Google Scholar 

  860. Aviram, M., et al. (2004). Pomegranate juice consumption for 3 years by patients with carotid artery stenosis reduces common carotid intima-media thickness, blood pressure and LDL oxidation. Clinical Nutrition, 23(3), 423–433.

    Article  CAS  PubMed  Google Scholar 

  861. Aviram, M., et al. (2000). Pomegranate juice consumption reduces oxidative stress, atherogenic modifications to LDL, and platelet aggregation: Studies in humans and in atherosclerotic apolipoprotein E-deficient mice. The American Journal of Clinical Nutrition, 71(5), 1062–1076.

    Article  CAS  PubMed  Google Scholar 

  862. Esmaillzadeh, A., et al. (2006). Cholesterol-lowering effect of concentrated pomegranate juice consumption in type II diabetic patients with hyperlipidemia. International Journal for Vitamin and Nutrition Research, 76(3), 147–151.

    Article  CAS  PubMed  Google Scholar 

  863. Alzahri, M. S., Rohra, A., & Peacock, W. F. (2016). Nitrates as a treatment of acute heart failure. Cardiac Failure Review, 2(1), 51–55.

    Article  PubMed  PubMed Central  Google Scholar 

  864. Hord, N. G. (2011). Dietary nitrates, nitrites, and cardiovascular disease. Current Atherosclerosis Reports, 13(6), 484–492.

    Article  CAS  PubMed  Google Scholar 

  865. Crum, E. M., et al. (2017). The effect of acute pomegranate extract supplementation on oxygen uptake in highly-trained cyclists during high-intensity exercise in a high altitude environment. Journal of the International Society of Sports Nutrition, 14, 14–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  866. Roelofs, E. J., et al. (2017). Effects of pomegranate extract on blood flow and vessel diameter after high-intensity exercise in young, healthy adults. European Journal of Sport Science, 17(3), 317–325.

    Article  PubMed  Google Scholar 

  867. Trexler, E. T., et al. (2014). Effects of pomegranate extract on blood flow and running time to exhaustion. Applied Physiology, Nutrition, and Metabolism, 39(9), 1038–1042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  868. Amri, Z., et al. (2017). Effect of pomegranate extracts on brain antioxidant markers and cholinesterase activity in high fat-high fructose diet induced obesity in rat model. BMC Complementary and Alternative Medicine, 17(1), 339–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  869. Morzelle, M. C., et al. (2016). Neuroprotective effects of pomegranate peel extract after chronic infusion with amyloid-β peptide in mice. PLoS One, 11(11), e0166123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  870. Loren, D. J., et al. (2005). Maternal dietary supplementation with pomegranate juice is neuroprotective in an animal model of neonatal hypoxic-ischemic brain injury. Pediatric Research, 57(6), 858–864.

    Article  CAS  PubMed  Google Scholar 

  871. Braidy, N., et al. (2013). Neuroprotective effects of a variety of pomegranate juice extracts against MPTP-induced cytotoxicity and oxidative stress in human primary neurons. Oxidative Medicine and Cellular Longevity, 2013, 685909.

    Article  PubMed  PubMed Central  Google Scholar 

  872. Sarkaki, A., et al. (2015). Pomegranate seed hydroalcoholic extract improves memory deficits in ovariectomized rats with permanent cerebral hypoperfusion/ischemia. Avicenna Journal of Phytomedicine, 5(1), 43–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  873. Riaz, A., Khan, R. A., & Algahtani, H. A. (2014). Memory boosting effect of Citrus limon, Pomegranate and their combinations. Pakistan Journal of Pharmaceutical Sciences, 27(6), 1837–1840.

    PubMed  Google Scholar 

  874. Bookheimer, S. Y., et al. (2013). Pomegranate juice augments memory and FMRI activity in middle-aged and older adults with mild memory complaints. Evidence-based Complementary and Alternative Medicine, 2013, 946298.

    Article  PubMed  PubMed Central  Google Scholar 

  875. Bellone, J. A., et al. (2018). Pomegranate supplementation improves cognitive and functional recovery following ischemic stroke: A randomized trial. Nutritional Neuroscience, 22, 738–743.

    Article  PubMed  Google Scholar 

  876. Hajipour, S., et al. (2014). Motor and cognitive deficits due to permanent cerebral hypoperfusion/ischemia improve by pomegranate seed extract in rats. Pakistan Journal of Biological Sciences, 17(8), 991–998.

    Article  CAS  PubMed  Google Scholar 

  877. Ropacki, S. A., Patel, S. M., & Hartman, R. E. (2013). Pomegranate supplementation protects against memory dysfunction after heart surgery: A pilot study. Evidence-based Complementary and Alternative Medicine, 2013, 8.

    Article  Google Scholar 

  878. Hartman, R. E., et al. (2006). Pomegranate juice decreases amyloid load and improves behavior in a mouse model of Alzheimer’s disease. Neurobiology of Disease, 24(3), 506–515.

    Article  CAS  PubMed  Google Scholar 

  879. Braidy, N., et al. (2016). Consumption of pomegranates improves synaptic function in a transgenic mice model of Alzheimer’s disease. Oncotarget, 7(40), 64589–64604.

    Article  PubMed  PubMed Central  Google Scholar 

  880. Essa, M. M., et al. (2015). Long-term dietary supplementation of pomegranates, figs and dates alleviate neuroinflammation in a transgenic mouse model of Alzheimer’s disease. PLoS One, 10(3), e0120964–e0120964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  881. Malviya, S., et al. (2014). Antioxidant and antibacterial potential of pomegranate peel extracts. Journal of Food Science and Technology, 51(12), 4132–4137.

    Article  CAS  PubMed  Google Scholar 

  882. Saeed, M., et al. (2018). The promising pharmacological effects and therapeutic/medicinal applications of Punica Granatum L. (Pomegranate) as a functional food in humans and animals. Recent Patents on Inflammation & Allergy Drug Discovery, 12(1), 24–38.

    Article  CAS  Google Scholar 

  883. Ismail, T., Sestili, P., & Akhtar, S. (2012). Pomegranate peel and fruit extracts: A review of potential anti-inflammatory and anti-infective effects. Journal of Ethnopharmacology, 143(2), 397–405.

    Article  CAS  PubMed  Google Scholar 

  884. Howell, A. B., & D’Souza, D. H. (2013). The pomegranate: Effects on bacteria and viruses that influence human health. Evidence-based Complementary and Alternative Medicine: eCAM, 2013, 606212.

    Article  Google Scholar 

  885. Li, Z., et al. (2015). Antimicrobial activity of pomegranate and green tea extract on propionibacterium acnes, Propionibacterium Granulosum, Staphylococcus Aureus and Staphylococcus Epidermidis. Journal of Drugs in Dermatology, 14(6), 574–578.

    CAS  PubMed  Google Scholar 

  886. Duman, A. D., et al. (2009). Antimicrobial activity of six pomegranate (Punica granatum L.) varieties and their relation to some of their pomological and phytonutrient characteristics. Molecules, 14(5), 1808–1817.

    Article  PubMed  PubMed Central  Google Scholar 

  887. Devatkal, S. K., et al. (2013). Antibacterial activity of aqueous extract of pomegranate peel against Pseudomonas stutzeri isolated from poultry meat. Journal of Food Science and Technology, 50(3), 555–560.

    Article  PubMed  Google Scholar 

  888. Choi, J.-G., et al. (2011). In vitro and in vivo antibacterial activity of Punica granatum peel ethanol extract against Salmonella. Evidence-Based Complementary and Alternative Medicine: eCAM, 2011, 690518.

    Google Scholar 

  889. Al-Zoreky, N. S. (2009). Antimicrobial activity of pomegranate (Punica granatum L.) fruit peels. International Journal of Food Microbiology, 134(3), 244–248.

    Article  CAS  PubMed  Google Scholar 

  890. Rosas-Burgos, E. C., et al. (2017). Antimicrobial activity of pomegranate peel extracts as affected by cultivar. Journal of the Science of Food and Agriculture, 97(3), 802–810.

    Article  CAS  PubMed  Google Scholar 

  891. Betanzos-Cabrera, G., et al. (2015). Antibacterial activity of fresh pomegranate juice against clinical strains of Staphylococcus epidermidis. Food & Nutrition Research, 59, 27620.

    Article  CAS  Google Scholar 

  892. Gould, S. W., et al. (2009). Anti-microbial activities of pomegranate rind extracts: Enhancement by cupric sulphate against clinical isolates of S. aureus, MRSA and PVL positive CA-MSSA. BMC Complementary and Alternative Medicine, 9, 23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  893. Dey, D., et al. (2012). Pomegranate pericarp extract enhances the antibacterial activity of ciprofloxacin against extended-spectrum beta-lactamase (ESBL) and metallo-beta-lactamase (MBL) producing Gram-negative bacilli. Food and Chemical Toxicology, 50(12), 4302–4309.

    Article  CAS  PubMed  Google Scholar 

  894. Dey, D., Ray, R., & Hazra, B. (2015). Antimicrobial activity of pomegranate fruit constituents against drug-resistant Mycobacterium tuberculosis and beta-lactamase producing Klebsiella pneumoniae. Pharmaceutical Biology, 53(10), 1474–1480.

    Article  CAS  PubMed  Google Scholar 

  895. Braga, L. C., et al. (2005). Synergic interaction between pomegranate extract and antibiotics against Staphylococcus aureus. Canadian Journal of Microbiology, 51(7), 541–547.

    Article  CAS  PubMed  Google Scholar 

  896. Millo, G., et al. (2017). Antibacterial inhibitory effects of Punica granatum gel on cariogenic bacteria: An in vitro study. International Journal of Clinical Pediatric Dentistry, 10(2), 152–157.

    Article  PubMed  PubMed Central  Google Scholar 

  897. Abdollahzadeh, S., et al. (2011). Antibacterial and antifungal activities of punica granatum peel extracts against oral pathogens. Journal of Dentistry (Tehran, Iran), 8(1), 1–6.

    Google Scholar 

  898. Aparecida Procópio Gomes, L., et al. (2016). Punica granatum L. (Pomegranate) extract: In vivo study of antimicrobial activity against Porphyromonas gingivalis in Galleria mellonella model. The Scientific World Journal, 2016, 8626987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  899. Ferrazzano, G. F., et al. (2017). In Vitro Antibacterial Activity of Pomegranate Juice and Peel Extracts on Cariogenic Bacteria. BioMed Research International, 2017, 2152749.

    Article  PubMed  PubMed Central  Google Scholar 

  900. Glazer, I., et al. (2012). Partial identification of antifungal compounds from Punica granatum peel extracts. Journal of Agricultural and Food Chemistry, 60(19), 4841–4848.

    Article  CAS  PubMed  Google Scholar 

  901. Pai, M. B., et al. (2010). Antifungal efficacy of Punica granatum, Acacia nilotica, Cuminum cyminum and Foeniculum vulgare on Candida albicans: An in vitro study. Indian Journal of Dental Research, 21(3), 334–336.

    Article  PubMed  Google Scholar 

  902. Višnjevec, A. M., et al. (2017). Genetic, biochemical, nutritional and antimicrobial characteristics of pomegranate (Punica granatum L.) grown in Istria. Food Technology and Biotechnology, 55(2), 151–163.

    PubMed  PubMed Central  Google Scholar 

  903. Anibal, P. C., et al. (2013). Antifungal activity of the ethanolic extracts of Punica granatum L. and evaluation of the morphological and structural modifications of its compounds upon the cells of Candida spp. Brazilian Journal of Microbiology, 44(3), 839–848.

    Article  PubMed  PubMed Central  Google Scholar 

  904. Endo, E. H., et al. (2010). Potent antifungal activity of extracts and pure compound isolated from pomegranate peels and synergism with fluconazole against Candida albicans. Research in Microbiology, 161(7), 534–540.

    Article  PubMed  Google Scholar 

  905. Li, Z. J., et al. (2017). Antifungal activity of gallic acid in vitro and in vivo. Phytotherapy Research, 31(7), 1039–1045.

    Article  CAS  PubMed  Google Scholar 

  906. Vasconcelos, L. C., et al. (2003). Use of Punica granatum as an antifungal agent against candidosis associated with denture stomatitis. Mycoses, 46(5-6), 192–196.

    Article  PubMed  Google Scholar 

  907. Bassiri-Jahromi, S. P., et al. (2018). In vivo comparative evaluation of the pomegranate (Punica granatum) peel extract as an alternative agent to nystatin against oral candidiasis. Iranian Journal of Medical Sciences, 43(3), 296–304.

    Google Scholar 

  908. Foss, S. R., et al. (2014). Antifungal activity of pomegranate peel extract and isolated compound punicalagin against dermatophytes. Annals of Clinical Microbiology and Antimicrobials, 13, 32–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  909. Su, X., Sangster, M. Y., & D’Souza, D. H. (2011). Time-dependent effects of pomegranate juice and pomegranate polyphenols on foodborne viral reduction. Foodborne Pathogens and Disease, 8(11), 1177–1183.

    Article  CAS  PubMed  Google Scholar 

  910. Reddy, B. U., et al. (2014). Small molecule inhibitors of HCV replication from pomegranate. Scientific Reports, 4, 5411–5411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  911. Neurath, A. R., et al. (2004). Punica granatum(Pomegranate) juice provides an HIV-1 entry inhibitor and candidate topical microbicide. BMC Infectious Diseases, 4(1), 41.

    Article  PubMed  PubMed Central  Google Scholar 

  912. Houston, D. M. J., et al. (2017). Potentiated virucidal activity of pomegranate rind extract (PRE) and punicalagin against Herpes simplex virus (HSV) when co-administered with zinc (II) ions, and antiviral activity of PRE against HSV and aciclovir-resistant HSV. PLoS One, 12(6), e0179291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  913. Arunkumar, J., & Rajarajan, S. (2018). Study on antiviral activities, drug-likeness and molecular docking of bioactive compounds of Punica granatum L. to Herpes simplex virus - 2 (HSV-2). Microbial Pathogenesis, 118, 301–309.

    Article  CAS  PubMed  Google Scholar 

  914. Lin, L.-T., et al. (2013). Broad-spectrum antiviral activity of chebulagic acid and punicalagin against viruses that use glycosaminoglycans for entry. BMC Microbiology, 13, 187–187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  915. Thangavelu, A., et al. (2017). Ancient seed for modern cure - pomegranate review of therapeutic applications in periodontics. Journal of Pharmacy & Bioallied Sciences, 9(Suppl 1), S11–S14.

    Article  Google Scholar 

  916. AlMatar, M., et al. (2018). Pomegranate as a possible treatment in reducing risk of developing wound healing, obesity, neurodegenerative disorders, and diabetes mellitus. Mini Reviews in Medicinal Chemistry, 18(6), 507–526.

    Article  CAS  PubMed  Google Scholar 

  917. Yuniarti, W. M., Primarizky, H., & Lukiswanto, B. S. (2018). The activity of pomegranate extract standardized 40% ellagic acid during the healing process of incision wounds in albino rats (Rattus norvegicus). Veterinary World, 11(3), 321–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  918. Elzayat, E., et al. (2018). Evaluation of wound healing activity of henna, pomegranate and myrrh herbal ointment blend. Saudi Pharmaceutical Journal, 26(5), 733–738.

    Article  PubMed  PubMed Central  Google Scholar 

  919. Lin, T.-K., Zhong, L., & Santiago, J. L. (2017). Anti-inflammatory and skin barrier repair effects of topical application of some plant oils. International Journal of Molecular Sciences, 19(1), 70.

    Article  CAS  PubMed Central  Google Scholar 

  920. Lee, C.-J., et al. (2017). Multiple activities of punica granatum linne against acne vulgaris. International Journal of Molecular Sciences, 18(1), 141.

    Article  CAS  PubMed Central  Google Scholar 

  921. Lenucci, M. S., et al. (2006). Antioxidant composition in cherry and high-pigment tomato cultivars. Journal of Agricultural and Food Chemistry, 54(7), 2606–2613.

    Article  CAS  PubMed  Google Scholar 

  922. Kozukue, N., & Friedman, M. (2003). Tomatine, chlorophyll, β-carotene and lycopene content in tomatoes during growth and maturation. Journal of the Science of Food and Agriculture, 83(3), 195–200.

    Article  CAS  Google Scholar 

  923. Bhowmik, D., et al. (2012). Tomato-a natural medicine and its health benefits introduction: Tomatoes are a member of. Journal of Pharmacognosy and Phytochemistry, 1(1), 33–43.

    Google Scholar 

  924. Claye, S. S., Idouraine, A., & Weber, C. W. (1996). Extraction and fractionation of insoluble fiber from five fiber source. Food Chemistry, 57, 305–310.

    Article  CAS  Google Scholar 

  925. Guan, Y.-S., & He, Q. (2015). Plants consumption and liver health. Evidence-based Complementary and Alternative Medicine, 2015, 10.

    Google Scholar 

  926. Yamashoji, S., & Onoda, E. (2016). Detoxification and function of immature tomato. Food Chemistry, 209, 171–176.

    Article  CAS  PubMed  Google Scholar 

  927. Elvira-Torales, L. I., et al. (2018). Tomato juice supplementation influences the gene expression related to steatosis in rats. Nutrients, 10(9), 1215.

    Article  CAS  PubMed Central  Google Scholar 

  928. Ho, K.-S., et al. (2012). Stopping or reducing dietary fiber intake reduces constipation and its associated symptoms. World Journal of Gastroenterology, 18(33), 4593–4596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  929. Frusciante, L., et al. (2007). Antioxidant nutritional quality of tomato. Molecular Nutrition & Food Research, 51(5), 609–617.

    Article  CAS  Google Scholar 

  930. Grune, T., et al. (2010). Beta-carotene is an important vitamin A source for humans. The Journal of Nutrition, 140(12), 2268S–2285S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  931. Kim, J. K. (2016). An update on the potential health benefits of carotenes. EXCLI Journal, 15, 1–4.

    PubMed  PubMed Central  Google Scholar 

  932. Clinton, S. K. (1998). Lycopene: Chemistry, biology, and implications for human health and disease. Nutrition Reviews, 56(2 Pt 1), 35–51.

    CAS  PubMed  Google Scholar 

  933. Rao, A. V., Ray, M. R., & Rao, L. G. (2006). Lycopene. Advances in Food and Nutrition Research, 51, 99–164.

    Article  CAS  PubMed  Google Scholar 

  934. Story, E. N., et al. (2010). An update on the health effects of tomato lycopene. Annual Review of Food Science and Technology, 1, 189–210.

    Article  CAS  PubMed  Google Scholar 

  935. Bharti, S., et al. (2014). Preclinical evidence for the pharmacological actions of naringin: A review. Planta Medica, 80(6), 437–451.

    Article  CAS  PubMed  Google Scholar 

  936. Liang, N., & Kitts, D. D. (2015). Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions. Nutrients, 8(1), 16.

    Article  CAS  PubMed Central  Google Scholar 

  937. Tajik, N., et al. (2017). The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: A comprehensive review of the literature. European Journal of Nutrition, 56(7), 2215–2244.

    Article  CAS  PubMed  Google Scholar 

  938. Rao, A. V. (2002). Lycopene, tomatoes, and the prevention of coronary heart disease. Experimental Biology and Medicine (Maywood, N.J.), 227(10), 908–913.

    Article  CAS  Google Scholar 

  939. Basu, A., & Imrhan, V. (2007). Tomatoes versus lycopene in oxidative stress and carcinogenesis: Conclusions from clinical trials. European Journal of Clinical Nutrition, 61(3), 295–303.

    Article  CAS  PubMed  Google Scholar 

  940. Riso, P., et al. (2006). Effect of a tomato-based drink on markers of inflammation, immunomodulation, and oxidative stress. Journal of Agricultural and Food Chemistry, 54(7), 2563–2566.

    Article  CAS  PubMed  Google Scholar 

  941. Karppi, J., et al. (2012). Low serum lycopene and beta-carotene increase risk of acute myocardial infarction in men. The European Journal of Public Health, 22(6), 835–840.

    Article  PubMed  Google Scholar 

  942. Karppi, J., et al. (2012). Serum lycopene decreases the risk of stroke in men: A population-based follow-up study. Neurology, 79(15), 1540–1547.

    Article  CAS  PubMed  Google Scholar 

  943. Palozza, P., et al. (2012). Effect of lycopene and tomato products on cholesterol metabolism. Annals of Nutrition and Metabolism, 61(2), 126–134.

    Article  CAS  PubMed  Google Scholar 

  944. Palomo, I., et al. (2012). Platelets and atherogenesis: Platelet anti-aggregation activity and endothelial protection from tomatoes (Solanum lycopersicum L.). Experimental and Therapeutic Medicine, 3(4), 577–584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  945. Mozos, I., et al. (2018). Lycopene and Vascular Health. Frontiers in Pharmacology, 9, 521–521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  946. Jacques, P. F., et al. (2013). Relationship of lycopene intake and consumption of tomato products to incident CVD. The British Journal of Nutrition, 110(3), 545–551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  947. Li, X., & Xu, J. (2013). Lycopene supplement and blood pressure: An updated meta-analysis of intervention trials. Nutrients, 5(9), 3696–3712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  948. Kizhakekuttu, T. J., & Widlansky, M. E. (2010). Natural antioxidants and hypertension: Promise and challenges. Cardiovascular Therapeutics, 28(4), e20–e32.

    Article  CAS  PubMed  Google Scholar 

  949. Onakpoya, I. J., et al. (2014). The effect of chlorogenic acid on blood pressure: A systematic review and meta-analysis of randomized clinical trials. Journal of Human Hypertension, 29, 77.

    Article  CAS  PubMed  Google Scholar 

  950. Zhao, Y., et al. (2012). Antihypertensive effects and mechanisms of chlorogenic acids. Hypertension Research, 35(4), 370–374.

    Article  CAS  PubMed  Google Scholar 

  951. Watanabe, T., et al. (2006). The blood pressure-lowering effect and safety of chlorogenic acid from green coffee bean extract in essential hypertension. Clinical and Experimental Hypertension, 28(5), 439–449.

    Article  CAS  PubMed  Google Scholar 

  952. Kozuma, K., et al. (2005). Antihypertensive effect of green coffee bean extract on mildly hypertensive subjects. Hypertension Research, 28(9), 711–718.

    Article  CAS  PubMed  Google Scholar 

  953. Rao, A. V., & Agarwal, S. (2000). Role of antioxidant lycopene in cancer and heart disease. Journal of the American College of Nutrition, 19(5), 563–569.

    Article  CAS  PubMed  Google Scholar 

  954. Giovannucci, E. (1999). Tomatoes, tomato-based products, lycopene, and cancer: Review of the epidemiologic literature. Journal of the National Cancer Institute, 91(4), 317–331.

    Article  CAS  PubMed  Google Scholar 

  955. Johary, A., Jain, V., & Misra, S. (2012). Role of lycopene in the prevention of cancer. International Journal of Nutrition, Pharmacology, Neurological Diseases, 2(3), 167–170.

    Article  CAS  Google Scholar 

  956. Etminan, M., Takkouche, B., & Caamano-Isorna, F. (2004). The role of tomato products and lycopene in the prevention of prostate cancer: A meta-analysis of observational studies. Cancer Epidemiology and Prevention Biomarkers, 13(3), 340–345.

    CAS  Google Scholar 

  957. Giovannucci, E. (2002). A review of epidemiologic studies of tomatoes, lycopene, and prostate cancer. Experimental Biology and Medicine (Maywood, N.J.), 227(10), 852–859.

    Article  CAS  Google Scholar 

  958. Gong, X., et al. (2016). Mitochondrial beta-carotene 9’,10’ oxygenase modulates prostate cancer growth via NF-kappaB inhibition: A lycopene-independent function. Molecular Cancer Research, 14(10), 966–975.

    Article  CAS  PubMed  Google Scholar 

  959. Holzapfel, N. P., et al. (2013). The potential role of lycopene for the prevention and therapy of prostate cancer: From molecular mechanisms to clinical evidence. International Journal of Molecular Sciences, 14(7), 14620–14646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  960. Sesso, H. D., et al. (2005). Dietary and plasma lycopene and the risk of breast cancer. Cancer Epidemiology and Prevention Biomarkers, 14(5), 1074–1081.

    Article  CAS  Google Scholar 

  961. Aune, D., et al. (2012). Dietary compared with blood concentrations of carotenoids and breast cancer risk: A systematic review and meta-analysis of prospective studies. The American Journal of Clinical Nutrition, 96(2), 356–373.

    Article  CAS  PubMed  Google Scholar 

  962. Sato, R., et al. (2002). Prospective study of carotenoids, tocopherols, and retinoid concentrations and the risk of breast cancer. Cancer Epidemiology and Prevention Biomarkers, 11(5), 451–457.

    CAS  Google Scholar 

  963. Palozza, P., et al. (2011). Tomato lycopene and lung cancer prevention: From experimental to human studies. Cancers, 3(2), 2333–2357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  964. Okuyama, Y., et al. (2014). Inverse associations between serum concentrations of zeaxanthin and other carotenoids and colorectal neoplasm in Japanese. International Journal of Clinical Oncology, 19(1), 87–97.

    Article  CAS  PubMed  Google Scholar 

  965. Reche, M., et al. (2001). Tomato allergy in children and young adults: Cross-reactivity with latex and potato. Allergy, 56(12), 1197–1201.

    Article  CAS  PubMed  Google Scholar 

  966. Leone, I. A., Brennan, E., & Daines, R. H. (1956). Atmospheric Fluoride: Its uptake and distribution in tomato and corn plants. Plant Physiology, 31(5), 329–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  967. Ogunbanwo, S. T., et al. (2013). Microbiological and nutritional evaluation of water melon juice (Citrullus lanatus). Academic Arena, 5(3), 36–41.

    Google Scholar 

  968. Ko, S. H., et al. (2005). Comparison of the antioxidant activities of nine different fruits in human plasma. Journal of Medicinal Food, 8(1), 41–46.

    Article  CAS  PubMed  Google Scholar 

  969. Naz, A., et al. (2014). Watermelon lycopene and allied health claims. EXCLI Journal, 13, 650–660.

    PubMed  PubMed Central  Google Scholar 

  970. Mohammad, M. K. A., et al. (2014). Watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai) juice modulates oxidative damage induced by low dose X-ray in mice. BioMed Research International, 2014, 512834.

    PubMed  PubMed Central  Google Scholar 

  971. Hong, M. Y., et al. (2015). Watermelon consumption improves inflammation and antioxidant capacity in rats fed an atherogenic diet. Nutrition Research, 35(3), 251–258.

    Article  CAS  PubMed  Google Scholar 

  972. Jacob, K., et al. (2008). Influence of lycopene and vitamin C from tomato juice on biomarkers of oxidative stress and inflammation. British Journal of Nutrition, 99(1), 137–146.

    Article  CAS  Google Scholar 

  973. Chen, P., et al. (2015). Lycopene and risk of prostate cancer: A systematic review and meta-analysis. Medicine (Baltimore), 94(33), e1260.

    Article  CAS  Google Scholar 

  974. Attard, E., & Martinoli, M. G. (2015). Cucurbitacin E, An experimental lead triterpenoid with anticancer, immunomodulatory and novel effects against degenerative diseases. A mini-review. Current Topics in Medicinal Chemistry, 15(17), 1708–1713.

    Article  CAS  PubMed  Google Scholar 

  975. Chen, X., et al. (2012). Biological activities and potential molecular targets of cucurbitacins: A focus on cancer. Anti-Cancer Drugs, 23(8), 777–787.

    Article  CAS  PubMed  Google Scholar 

  976. Bowers, L. W., et al. (2015). The role of the insulin/IGF system in cancer: Lessons learned from clinical trials and the energy balance-cancer link. Frontiers in Endocrinology, 6, 77.

    Article  PubMed  PubMed Central  Google Scholar 

  977. Yu, H., & Rohan, T. (2000). Role of the insulin-like growth factor family in cancer development and progression. Journal of the National Cancer Institute, 92(18), 1472–1489.

    Article  CAS  PubMed  Google Scholar 

  978. Klimant, E., et al. (2018). Intravenous vitamin C in the supportive care of cancer patients: A review and rational approach. Current Oncology (Toronto, Ont.), 25(2), 139–148.

    Article  CAS  Google Scholar 

  979. Bohm, V. (2012). Lycopene and heart health. Molecular Nutrition & Food Research, 56(2), 296–303.

    Article  CAS  Google Scholar 

  980. Figueroa, A., et al. (2013). Effects of watermelon supplementation on arterial stiffness and wave reflection amplitude in postmenopausal women. Menopause, 20(5), 573–577.

    PubMed  Google Scholar 

  981. Poduri, A., et al. (2013). Citrullus lanatus ‘sentinel’ (watermelon) extract reduces atherosclerosis in LDL receptor-deficient mice. The Journal of Nutritional Biochemistry, 24(5), 882–886.

    Article  CAS  PubMed  Google Scholar 

  982. Karppi, J., et al. (2013). Serum carotenoids reduce progression of early atherosclerosis in the carotid artery wall among Eastern Finnish men. PLoS One, 8(5), e64107.

    Article  PubMed  PubMed Central  Google Scholar 

  983. Collins, J. K., et al. (2007). Watermelon consumption increases plasma arginine concentrations in adults. Nutrition, 23(3), 261–266.

    Article  CAS  PubMed  Google Scholar 

  984. Tripathi, P. (2007). Nitric oxide and immune response. Indian Journal of Biochemistry and Biophysics, 44(5), 310–319.

    CAS  PubMed  Google Scholar 

  985. Houston, M. (2011). The role of magnesium in hypertension and cardiovascular disease. The Journal of Clinical Hypertension (Greenwich), 13(11), 843–847.

    Article  CAS  Google Scholar 

  986. Oseni, O. A., Odesanmi, O. E., & Oladele, F. C. (2015). Antioxidative and antidiabetic activities of watermelon (Citrullus lanatus) juice on oxidative stress in alloxan-induced diabetic male Wistar albino rats. Nigerian Medical Journal: Journal of the Nigeria Medical Association, 56(4), 272–277.

    Article  CAS  Google Scholar 

  987. Muraki, I., et al. (2013). Fruit consumption and risk of type 2 diabetes: Results from three prospective longitudinal cohort studies. BMJ (Clinical Research Ed.), 347, f5001.

    Google Scholar 

  988. Wu, G., et al. (2007). Dietary supplementation with watermelon pomace juice enhances arginine availability and ameliorates the metabolic syndrome in Zucker diabetic fatty rats. The Journal of Nutrition, 137(12), 2680–2685.

    Article  CAS  PubMed  Google Scholar 

  989. Edwards, A. J., et al. (2003). Consumption of watermelon juice increases plasma concentrations of lycopene and beta-carotene in humans. The Journal of Nutrition, 133(4), 1043–1050.

    Article  CAS  PubMed  Google Scholar 

  990. Tarazona-Diaz, M. P., et al. (2013). Watermelon juice: Potential functional drink for sore muscle relief in athletes. Journal of Agricultural and Food Chemistry, 61(31), 7522–7528.

    Article  CAS  PubMed  Google Scholar 

  991. Shanely, R. A., et al. (2016). Comparison of watermelon and carbohydrate beverage on exercise-induced alterations in systemic inflammation, immune dysfunction, and plasma antioxidant capacity. Nutrients, 8(8), 518.

    Article  CAS  PubMed Central  Google Scholar 

  992. Cutrufello, P. T., Gadomski, S. J., & Zavorsky, G. S. (2015). The effect of l-citrulline and watermelon juice supplementation on anaerobic and aerobic exercise performance. Journal of Sports Sciences, 33(14), 1459–1466.

    Article  PubMed  Google Scholar 

  993. Lindinger, M. I., & Sjogaard, G. (1991). Potassium regulation during exercise and recovery. Sports Medicine, 11(6), 382–401.

    Article  CAS  PubMed  Google Scholar 

  994. Fraser, P. D., & Bramley, P. M. (2004). The biosynthesis and nutritional uses of carotenoids. Progress in Lipid Research, 43(3), 228–265.

    Article  CAS  PubMed  Google Scholar 

  995. Sharma, P. B., et al. (1986). Studies on the nutritional quality of some cucurbit kernel proteins. Journal of the Science of Food and Agriculture, 37(4), 418–420.

    Article  CAS  Google Scholar 

  996. Xu, Y., Leo, M. A., & Lieber, C. S. (2003). Lycopene attenuates alcoholic apoptosis in HepG2 cells expressing CYP2E1. Biochemical and Biophysical Research Communications, 308(3), 614–618.

    Article  CAS  PubMed  Google Scholar 

  997. Veeramachaneni, S., et al. (2008). High dose lycopene supplementation increases hepatic cytochrome P4502E1 protein and inflammation in alcohol-fed rats. The Journal of Nutrition, 138(7), 1329–1335.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sawsan G. Mohammed or M. Walid Qoronfleh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohammed, S.G., Qoronfleh, M.W. (2020). Fruits. In: Essa, M., Qoronfleh, M. (eds) Personalized Food Intervention and Therapy for Autism Spectrum Disorder Management. Advances in Neurobiology, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-030-30402-7_10

Download citation

Publish with us

Policies and ethics