Skip to main content

Future Work: Temperature Anisotropy Description

  • Chapter
  • First Online:
  • 202 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The EBM equations assume the MHD closure, that is, that proton temperature is isotropic. This assumption is not always valid. As it can be seen from 2D cuts of the 3D velocity distribution functions of protons, while the core of the velocity distribution function for slow winds is isotropic, the distribution for fast winds is perpendicular to the mean magnetic field axis. Consequently, temperature anisotropy is more important for fast winds than for slow winds. Here, we propose how to take into account this property of the solar wind that has not been considered in this thesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chew GF, Goldberger M, Low FE (1956) The Boltzmann equation an d the one-fluid hydromagnetic equations in the absence of particle collisions. In: The royal society, vol 236

    Google Scholar 

  2. Hellinger P, Travnicek P, Štverák Š, Matteini L, Velli M (2013) Proton thermal energetics in the solar wind: Helios reloaded. J Geophys Res Space Phys 118(4):1351–1365

    Article  ADS  Google Scholar 

  3. Hellinger P, Matteini L, Štverák Š, Travnicek P, Marsch E (2011) Heating and cooling of protons in the fast solar wind between 0.3 and 1 AU: Helios revisited. J Geophys Res 116(A9). https://doi.org/10.1029/2011JA016674

  4. Leubner MP, Viñas AF (1986) Stability analysis of double-peaked proton distribution functions in the solar wind. J Geophys Res 91(A12):13366

    Article  ADS  Google Scholar 

  5. Marsch E, Mühlhäuser KH, Rosenbauer H, Schwenn R (1983) On the equation of state of solar wind ions derived from Helios measurements. J Geophys Res 88(A4):2982

    Article  ADS  Google Scholar 

  6. Marsch E, Mühlhäuser KH, Schwenn R, Rosenbauer H, Pilipp W, Neubauer FM (1982) Solar wind protons: three-dimensional velocity distributions and derived plasma parameters measured between 0.3 and 1 AU. J Geophys Res 87(A1):52–72. https://doi.org/10.1029/JA087iA01p00052

  7. Matteini L, Landi S, Hellinger P, Pantellini F, Maksimovic, Milan, Velli M, Goldstein BE, Marsch E (2007) Evolution of the solar wind proton temperature anisotropy from 0.3 to 2.5 AU. Geophysical Research Letters 34(20):A01106–5

    Google Scholar 

  8. Tenerani A, Velli M, Hellinger P (2017) The parametric instability of Alfvén waves: effects of temperature anisotropy. Astrophys J 851(2):99

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Montagud-Camps .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Montagud-Camps, V. (2019). Future Work: Temperature Anisotropy Description . In: Turbulent Heating and Anisotropy in the Solar Wind. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-30383-9_14

Download citation

Publish with us

Policies and ethics