Advertisement

A Look Back Over 20 Years of Evo-Devo Studies on Sponges: A Challenged View of Urmetazoa

  • Quentin Schenkelaars
  • Amélie Vernale
  • Laura Fierro-Constaín
  • Carole Borchiellini
  • Emmanuelle RenardEmail author
Chapter
  • 562 Downloads

Abstract

The majority of extant metazoans are animals with bilateral symmetry, a gut, a central nervous system and a head; they are grouped in a taxon named Bilateria. As a consequence, most of the zoological definitions are based on observations in bilaterian animals. To understand how these anatomical features emerged, it is now necessary for the Evo-Devo field to undertake studies on the four extant lineages that emerged earlier, namely Cnidaria, Placozoa, Ctenophora and Porifera. Being the sister group of bilaterians, cnidarians have received much attention compared to the other three phyla but, given the disparity of body plans between these four non-bilaterian phyla, comparative analyses are needed not only to trace back the origin and evolution of genetic mechanisms involved in animal development but also to understand the evolutionary processes that gave rise to such a huge animal body plan diversity. This chapter focuses on the evo-devo approaches applied to Porifera and how the data have changed our view of these uncommon animals and how it challenges previous concepts of the last common metazoan ancestor. We discuss here the current and future steps that need to be undertaken to ensure that sponges join the laboratory “model organisms club.”

Keywords

Bilaterians Non-bilaterians Body plan evolution Animal evolution Phylogenetic Genomics Model organisms 

Notes

Acknowledgements

The authors acknowledge the Région Provence Alpes Côte d’Azur and the French Research ministry for the PhD funding they provided to L. Fierro Ph.Ds of L. Fierro-Constain’s and the Q. Schenkelaars respectively. The authors thank Prof. Stephen Prime (University of Bristol) and Mr. Thomas Smith, two native English speakers, for providing proofreading services. The authors are grateful to Dr. Pierre Pontarotti and Dr. Anne Chenuil-Maurel for constructive comments for Sect. 7.2. The authors thank the French National Center for Scientific Research (CNRS), Aix-Marseille University and the Amidex foundation for providing funds to support fundamental research.

References

  1. Adams EDM, Goss GG, Leys SP (2010) Freshwater sponges have functional, sealing Epithelia with high transepithelial resistance and negative transepithelial potential. PLoS One 5(11):e15040.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Adamska M (2016) Sponges as models to study emergence of complex animals. Curr Opin Genet Dev 39:21–28PubMedCrossRefPubMedCentralGoogle Scholar
  3. Adamska M, Matus DQ, Adamski M, Green K, Rokhsar DS, Martindale MQ, Degnan BM (2007a) The evolutionary origin of hedgehog proteins. Curr Biol 17:R836–R837PubMedCrossRefPubMedCentralGoogle Scholar
  4. Adamska M, Degnan SM, Green KM, Adamski M, Craigie A, Larroux C, Degnan BM (2007b) Wnt and TGF-beta expression in the sponge Amphimedon queenslandica and the origin of metazoan embryonic patterning. PLoS ONE 2:e1031PubMedPubMedCentralCrossRefGoogle Scholar
  5. Adamska M, Larroux C, Adamski M, Green K, Lovas E, Koop D, Richards GS, Zwafink C, Degnan BM (2010) Structure and expression of conserved Wnt pathway components in the demosponge Amphimedon queenslandica. Evol Dev 12:494–518PubMedCrossRefPubMedCentralGoogle Scholar
  6. Adamska M, Degnan BM, Green K, Zwafink C (2011) What sponges can tell us about the evolution of developmental processes. Zoology (Jena) 114:1–10CrossRefGoogle Scholar
  7. Adell T, Thakur AN, Müller WEG (2007) Isolation and characterization of Wnt pathway-related genes from Porifera. Cell Biol Int 31:939–949PubMedCrossRefPubMedCentralGoogle Scholar
  8. Adl SM, Bass D, Lane CE, Lukeš J, Schoch CL, Smirnov A, Agatha S, Berney C, Brown MW, Burki F, et al (2018) Revisions to the classification, nomenclature, and diversity of Eukaryotes. J Eukaryot MicrobiolGoogle Scholar
  9. Adoutte A, Balavoine G, Lartillot N, Lespinet O, Prud’homme B, de Rosa R (2000) The new animal phylogeny: reliability and implications. Proc Natl Acad Sci USA 97:4453–4456CrossRefGoogle Scholar
  10. Aguinaldo AM, Turbeville JM, Linford LS, Rivera MC, Garey JR, Raff RA, Lake JA (1997) Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387:489–493PubMedCrossRefPubMedCentralGoogle Scholar
  11. Alexander BE, Liebrand K, Osinga R, van der Geest HG, Admiraal W, Cleutjens JPM, Schutte B, Verheyen F, Ribes M, van Loon E et al (2014) Cell turnover and detritus production in marine sponges from tropical and temperate benthic ecosystems. PLoS ONE 9:e109486PubMedPubMedCentralCrossRefGoogle Scholar
  12. Alexander BE, Achlatis M, Osinga R, van der Geest HG, Cleutjens JPM, Schutte B, de Goeij JM (2015) Cell kinetics during regeneration in the sponge Halisarca caerulea: how local is the response to tissue damage? Peer J 3:e820PubMedCrossRefPubMedCentralGoogle Scholar
  13. Alié A, Hayashi T, Sugimura I, Manuel M, Sugano W, Mano A, Satoh N, Agata K, Funayama N (2015) The ancestral gene repertoire of animal stem cells. Proc Nat Acad Sci 201514789Google Scholar
  14. Atkinson SD, Bartholomew JL, Lotan T (2018) Myxozoans: ancient metazoan parasites find a home in phylum Cnidaria. Zoology (Jena) 129:66–68CrossRefGoogle Scholar
  15. Babonis LS, Martindale MQ (2017) Phylogenetic evidence for the modular evolution of metazoan signalling pathways. Philos Trans R Soc Lond B Biol Sci 372CrossRefGoogle Scholar
  16. Belahbib H, Renard E, Santini S, Jourda C, Claverie J-M, Borchiellini C, Bivic AL (2018). New genomic data and analyses challenge the traditional vision of animal epithelium evolution. BMC Genomics 228452Google Scholar
  17. Booth DS, Szmidt-Middleton H, King N (2018) Choanoflagellate transfection illuminates their cell biology and the ancestry of animal septins. Mol Biol Cell mbcE18080514Google Scholar
  18. Borchiellini C, Boury-Esnault N, Vacelet J, Le Parco Y (1998) Phylogenetic analysis of the Hsp70 sequences reveals the monophyly of Metazoa and specific phylogenetic relationships between animals and fungi. Mol Biol Evol 15:647–655PubMedCrossRefPubMedCentralGoogle Scholar
  19. Borchiellini C, Chombard C, Lafay B, Boury-Esnault N (2000) Molecular systematics of sponges (Porifera). Hydrobiologia 420:15–27CrossRefGoogle Scholar
  20. Borchiellini C, Manuel M, Alivon E, Boury-Esnault N, Vacelet J, Parco YL (2001) Sponge paraphyly and the origin of Metazoa. J Evol Biol 14:171–179PubMedCrossRefPubMedCentralGoogle Scholar
  21. Borisenko I, Adamski M, Ereskovsky A, Adamska M (2016) Surprisingly rich repertoire of Wnt genes in the demosponge Halisarca dujardini. BMC Evol Biol 16:123PubMedPubMedCentralCrossRefGoogle Scholar
  22. Boute N, Exposito J-Y, Boury-Esnault N, Vacelet J, Noro N, Miyazaki K, Yoshizato K, Garrone R (1996) Type IV collagen in sponges, the missing link in basement membrane ubiquity. Biol Cell 88:37–44PubMedCrossRefPubMedCentralGoogle Scholar
  23. Brien P (1967) Les éponges: leur nature métazoaire-leur gastrulation-leur état colonial. Ann Soc Roy Zool Belg 97:197–235Google Scholar
  24. Brosius J (2018) Exaptation at the molecular genetic level. Sci China Life SciGoogle Scholar
  25. Brunet T, King N (2017) The origin of animal multicellularity and cell differentiation. Dev Cell 43:124–140PubMedPubMedCentralCrossRefGoogle Scholar
  26. Brusca RC, Brusca GJ (2003). Invertebrates (Sinauer Associates)Google Scholar
  27. Carroll S (2005) Bringing Evo Devo to Life. PLOS Biol. W. W. Norton and Company, New York 350 p. ISBN (hardcover) 0-393-06016-0Google Scholar
  28. Cavalier-Smith T (2017) Origin of animal multicellularity: precursors, causes, consequences—the choanoflagellate/sponge transition, neurogenesis and the Cambrian explosion. Philos Trans R Soc Lond B Biol Sci 372CrossRefGoogle Scholar
  29. Cavalier-Smith T, Allsopp MTEP, Chao EE, Boury-Esnault N, Vacelet J (1996) Sponge phylogeny, animal monophyly, and the origin of the nervous system: 18S rRNA evidence. Can J Zool 74:2031–2045CrossRefGoogle Scholar
  30. Collins AG (1998) Evaluating multiple alternative hypotheses for the origin of Bilateria: an analysis of 18S rRNA molecular evidence. Proc Natl Acad Sci USA 95:15458–15463PubMedCrossRefPubMedCentralGoogle Scholar
  31. De Vos L, Rützler K, Boury-Esnault N, Donadey C, Vacelet J (1991) Atlas of sponge morphology. Smithsonian Institution Press, Washington. J Mar Biol Assoc UK 71(4):915–915 Google Scholar
  32. Degnan BM, Degnan SM, Naganuma T, Morse DE (1993) The ets multigene family is conserved throughout the Metazoa. Nucleic Acids Res 21:3479–3484PubMedPubMedCentralCrossRefGoogle Scholar
  33. Degnan BM, Vervoort M, Larroux C, Richards GS (2009) Early evolution of metazoan transcription factors. Curr Opin Genet Dev 19:591–599PubMedCrossRefGoogle Scholar
  34. Deutsch J, Le Guyader H (1998) The neuronal zootype. An hypothesis. Comptes Rendus de l’Académie Des Sciences—Series III—Sciences de La Vie 321:713–719CrossRefGoogle Scholar
  35. Dohrmann M, Wörheide G (2017) Dating early animal evolution using phylogenomic data. Sci Rep 7Google Scholar
  36. Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E, Rouse GW, Obst M, Edgecombe GD et al (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745–749CrossRefPubMedGoogle Scholar
  37. Dunn CW, Leys SP, Haddock SHD (2015) The hidden biology of sponges and ctenophores. Trends Ecol Evol 30:282–291PubMedCrossRefGoogle Scholar
  38. Dunning LT, Olofsson JK, Parisod C, Choudhury RR, Moreno-Villena JJ, Yang Y, Dionora J, Quick WP, Park M, Bennetzen JL, et al (2019) Lateral transfers of large DNA fragments spread functional genes among grasses. Proc Natl Acad Sci USAGoogle Scholar
  39. Dunning Hotopp JC (2018) Grafting or pruning in the animal tree: lateral gene transfer and gene loss? BMC Genom 19:470CrossRefGoogle Scholar
  40. Eddy SR (2012) The C-value paradox, junk DNA and ENCODE. Curr Biol 22:R898–R899PubMedCrossRefPubMedCentralGoogle Scholar
  41. Eerkes-Medrano DI, Leys SP (2006) Ultrastructure and embryonic development of a syconoid calcareous sponge. Invertebr Biol 125:177–194CrossRefGoogle Scholar
  42. Eitel M, Francis WR, Varoqueaux F, Daraspe J, Osigus H-J, Krebs S, Vargas S, Blum H, Williams GA, Schierwater B et al (2018) Comparative genomics and the nature of placozoan species. PLoS Biol 16:e2005359PubMedPubMedCentralCrossRefGoogle Scholar
  43. Elliott GRD, Leys SP (2010) Evidence for glutamate, GABA and NO in coordinating behaviour in the sponge, Ephydatia muelleri (Demospongiae, Spongillidae). J Exp Biol 213:2310–2321PubMedCrossRefPubMedCentralGoogle Scholar
  44. Ellwanger K, Nickel M (2006) Neuroactive substances specifically modulate rhythmic body contractions in the nerveless metazoon Tethya wilhelma (Demospongiae, Porifera). Front Zool 3:7PubMedPubMedCentralCrossRefGoogle Scholar
  45. Ellwanger K, Eich A, Nickel M (2007) GABA and glutamate specifically induce contractions in the sponge Tethya wilhelma. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 193:1–11PubMedCrossRefPubMedCentralGoogle Scholar
  46. Ereskovsky A (2010) The comparative embryology of sponges, pp 209–230CrossRefGoogle Scholar
  47. Ereskovsky AV, Borisenko IE, Lapébie P, Gazave E, Tokina DB, Borchiellini C (2015) Oscarella lobularis (Homoscleromorpha, Porifera) regeneration: epithelial morphogenesis and metaplasia. PLoS ONE 10:e0134566PubMedPubMedCentralCrossRefGoogle Scholar
  48. Fahey B, Degnan BM (2010) Origin of animal epithelia: insights from the sponge genome: evolution of epithelia. Evol Dev 12:601–617PubMedCrossRefPubMedCentralGoogle Scholar
  49. Fahey B, Degnan BM (2012) Origin and evolution of laminin gene family diversity. Mol Biol Evol 29:1823–1836PubMedCrossRefPubMedCentralGoogle Scholar
  50. Fairclough SR, Chen Z, Kramer E, Zeng Q, Young S, Robertson HM, Begovic E, Richter DJ, Russ C, Westbrook MJ et al (2013) Premetazoan genome evolution and the regulation of cell differentiation in the choanoflagellate Salpingoeca rosetta. Genome Biol 14:R15PubMedPubMedCentralCrossRefGoogle Scholar
  51. Felsenstein J (1978) Cases in which parsimony or compatibility methods will be positively misleading. Syst Zool 27:401–410CrossRefGoogle Scholar
  52. Fernandez-Valverde SL, Degnan BM (2016) Bilaterian-like promoters in the highly compact Amphimedon queenslandica genome. Sci Rep 6:22496PubMedPubMedCentralCrossRefGoogle Scholar
  53. Ferrier DEK (2016) The origin of the Hox/ParaHox genes, the ghost locus hypothesis and the complexity of the first animal. Brief Funct Genomics 15:333–341PubMedCrossRefPubMedCentralGoogle Scholar
  54. Feuda R, Dohrmann M, Pett W, Philippe H, Rota-Stabelli O, Lartillot N, Wörheide G, Pisani D (2017) Improved modeling of compositional heterogeneity supports sponges as sister to all other animals. Curr Biol 0Google Scholar
  55. Fidler AL, Darris CE, Chetyrkin SV, Pedchenko VK, Boudko SP, Brown KL, Gray Jerome W, Hudson JK, Rokas A, Hudson BG (2017) Collagen IV and basement membrane at the evolutionary dawn of metazoan tissues. Elife 6Google Scholar
  56. Fierro-Constaín L, Schenkelaars Q, Gazave E, Haguenauer A, Rocher C, Ereskovsky A, Borchiellini C, Renard E (2017) The conservation of the germline multipotency program, from sponges to vertebrates: a stepping stone to understanding the somatic and germline origins. Genome Biol Evol 9:474–488PubMedPubMedCentralGoogle Scholar
  57. Fortunato S, Adamski M, Bergum B, Guder C, Jordal S, Leininger S, Zwafink C, Rapp HT, Adamska M (2012) Genome-wide analysis of the sox family in the calcareous sponge Sycon ciliatum: multiple genes with unique expression patterns. EvoDevo 3:14PubMedPubMedCentralCrossRefGoogle Scholar
  58. Fortunato SAV, Adamski M, Ramos OM, Leininger S, Liu J, Ferrier DEK, Adamska M (2014) Calcisponges have a ParaHox gene and dynamic expression of dispersed NK homeobox genes. Nature 514:620–623PubMedCrossRefPubMedCentralGoogle Scholar
  59. Fortunato SAV, Adamski M, Adamska M (2015) Comparative analyses of developmental transcription factor repertoires in sponges reveal unexpected complexity of the earliest animals. Mar Genomics 24:121–129PubMedCrossRefPubMedCentralGoogle Scholar
  60. Fortunato SAV, Vervoort M, Adamski M, Adamska M (2016) Conservation and divergence of bHLH genes in the calcisponge Sycon ciliatum. EvoDevo 7Google Scholar
  61. Francis WR, Eitel M, Vargas S, Adamski M, Haddock SH, Krebs S, Blum H, Erpenbeck D, Wörheide G (2017) The genome of the contractile demosponge Tethya wilhelma and the evolution of metazoan neural signalling pathways. BioRxiv 120998Google Scholar
  62. Fu X, Adamski M, Thompson EM (2008) Altered miRNA repertoire in the simplified chordate, Oikopleura dioica. Mol Biol Evol 25:1067–1080PubMedCrossRefPubMedCentralGoogle Scholar
  63. Funayama N (2018) The cellular and molecular bases of the sponge stem cell systems underlying reproduction, homeostasis and regeneration. Int J Dev Biol 62:513–525PubMedCrossRefPubMedCentralGoogle Scholar
  64. Funayama N, Nakatsukasa M, Kuraku S, Takechi K, Dohi M, Iwabe N, Miyata T, Agata K (2005a) Isolation of Ef silicatein and Ef lectin as molecular markers sclerocytes and cells involved in innate immunity in the freshwater sponge Ephydatia fluviatilis. Jzoo 22:1113–1122CrossRefGoogle Scholar
  65. Funayama N, Nakatsukasa M, Hayashi T, Agata K (2005b) Isolation of the choanocyte in the fresh water sponge, Ephydatia fluviatilis and its lineage marker. Ef annexin Dev Growth Differ 47:243–253PubMedCrossRefPubMedCentralGoogle Scholar
  66. Funayama N, Nakatsukasa M, Mohri K, Masuda Y, Agata K (2010) Piwi expression in archeocytes and choanocytes in demosponges: insights into the stem cell system in demosponges. Evol Dev 12:275–287PubMedCrossRefPubMedCentralGoogle Scholar
  67. Galliot B (2012) Hydra, a fruitful model system for 270 years. Int J Dev Biol 56:411–423PubMedCrossRefPubMedCentralGoogle Scholar
  68. Ganot P, Zoccola D, Tambutté E, Voolstra CR, Aranda M, Allemand D, Tambutté S (2015) Structural molecular components of septate junctions in cnidarians point to the origin of epithelial junctions in eukaryotes. Mol Biol Evol 32:44–62PubMedCrossRefPubMedCentralGoogle Scholar
  69. Gazave E, Lapébie P, Renard E, Bézac C, Boury-Esnault N, Vacelet J, Pérez T, Manuel M, Borchiellini C (2008) NK homeobox genes with choanocyte-specific expression in homoscleromorph sponges. Dev Genes Evol 218:479–489PubMedCrossRefPubMedCentralGoogle Scholar
  70. Gazave E, Lapébie P, Richards GS, Brunet F, Ereskovsky AV, Degnan BM, Borchiellini C, Vervoort M, Renard E (2009) Origin and evolution of the Notch signalling pathway: an overview from eukaryotic genomes. BMC Evol Biol 9:249PubMedPubMedCentralCrossRefGoogle Scholar
  71. Gazave E, Lavrov DV, Cabrol J, Renard E, Rocher C, Vacelet J, Adamska M, Borchiellini C, Ereskovsky AV (2013) Systematics and molecular phylogeny of the family oscarellidae (homoscleromorpha) with description of two new oscarella species. PLoS ONE 8:e63976PubMedPubMedCentralCrossRefGoogle Scholar
  72. Gazave E, Guillou A, Balavoine G (2014) History of a prolific family: the Hes/Hey-related genes of the annelid Platynereis. EvoDevo 5:29PubMedPubMedCentralCrossRefGoogle Scholar
  73. Gilbert SF (2010) Developmental biology, 9th edn. Sinauer Associates Inc, Sunderland, MAGoogle Scholar
  74. Glenner H, Hansen AJ, Sørensen MV, Ronquist F, Huelsenbeck JP, Willerslev E (2004) Bayesian inference of the metazoan phylogeny: a combined molecular and morphological approach. Curr Biol 14:1644–1649PubMedCrossRefPubMedCentralGoogle Scholar
  75. Grau-Bové X, Torruella G, Donachie S, Suga H, Leonard G, Richards TA, Ruiz-Trillo I (2017). Dynamics of genomic innovation in the unicellular ancestry of animals. ELife 6Google Scholar
  76. Hadzi J (1953) An attempt to reconstruct the system of animal classification. Syst Zool 2(4):145–154CrossRefGoogle Scholar
  77. Haeckel E (1874) Die Gastraea-Theorie, die phylogenetische Classification des Thierreichsund die Homologie der Keimblätter. Jenaische Zeitschrift für Naturwissenschaft 8:1–55Google Scholar
  78. Hahn MW, Wray GA (2002) The g-value paradox. Evol Dev 4:73–75PubMedCrossRefPubMedCentralGoogle Scholar
  79. Halanych KM (2015) The ctenophore lineage is older than sponges? That cannot be right! Or can it? J Exp Biol 218:592–597PubMedCrossRefPubMedCentralGoogle Scholar
  80. Halanych KM, Bacheller JD, Aguinaldo AM, Liva SM, Hillis DM, Lake JA (1995) Evidence from 18S ribosomal DNA that the lophophorates are protostome animals. Science 267:1641–1643PubMedCrossRefPubMedCentralGoogle Scholar
  81. Halanych KM, Whelan NV, Kocot KM, Kohn AB, Moroz LL (2016) Miscues misplace sponges. Proc Natl Acad Sci USA 113:E946–E947PubMedCrossRefPubMedCentralGoogle Scholar
  82. Hall C, Rodriguez M, Garcia J, Posfai D, DuMez R, Wictor E, Quintero OA, Hill MS, Rivera AS, Hill AL (2019) Secreted frizzled related protein is a target of PaxB and plays a role in aquiferous system development in the freshwater sponge Ephydatia muelleri. PLoS ONE 14:e0212005PubMedPubMedCentralCrossRefGoogle Scholar
  83. Hanelt B, Van Schyndel D, Adema CM, Lewis LA, Loker ES (1996) The phylogenetic position of Rhopalura ophiocomae (Orthonectida) based on 18S ribosomal DNA sequence analysis. Mol Biol Evol 13:1187–1191PubMedCrossRefPubMedCentralGoogle Scholar
  84. Hestetun JT, Tompkins-Macdonald G, Rapp HT (2017) A review of carnivorous sponges (Porifera: Cladorhizidae) from the Boreal North Atlantic and Arctic. Zool J Linn Soc 181:1–69CrossRefGoogle Scholar
  85. Hinck AP, Mueller TD, Springer TA (2016). Structural biology and evolution of the TGF-β Family. Cold Spring Harb Perspect Biol 8PubMedPubMedCentralCrossRefGoogle Scholar
  86. Hoffmeyer TT, Burkhardt P (2016) Choanoflagellate models—Monosiga brevicollis and Salpingoeca rosetta. Curr Opin Genet Dev 39:42–47PubMedCrossRefPubMedCentralGoogle Scholar
  87. Holland LZ (2016) Tunicates. Curr Biol 26:R146–R152PubMedCrossRefPubMedCentralGoogle Scholar
  88. Hyman LH (1940). The invertebrates: mollusca I. McGraw-HillGoogle Scholar
  89. Hyman LH (1951) The invertebrates: Platyhelminthes and Rhynchocoela, the acoelomate Bilateria. Invertebr. Platyhelminthes Rhynchocoela Acoelomate Bilateria 2Google Scholar
  90. Jékely G, Paps J, Nielsen C (2015) The phylogenetic position of ctenophores and the origin (s) of nervous systems. EvoDevo 6:1PubMedPubMedCentralCrossRefGoogle Scholar
  91. Jenner RA, Wills MA (2007) The choice of model organisms in evo-devo. Nat Rev Genet 8:311–314PubMedCrossRefPubMedCentralGoogle Scholar
  92. Johnson TA, Milan-Lobo L, Che T, Ferwerda M, Lambu E, McIntosh NL, Li F, He L, Lorig-Roach N, Crews P et al (2017) Identification of the first marine-derived opioid receptor “balanced” agonist with a signaling profile that resembles the endorphins. ACS Chem Neurosci 8:473–485PubMedCrossRefPubMedCentralGoogle Scholar
  93. Kalyaanamoorthy S, Minh BQ, Wong TK, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14:587–589PubMedPubMedCentralCrossRefGoogle Scholar
  94. Kim J, Kim W, Cunningham CW (1999) A new perspective on lower metazoan relationships from 18S rDNA sequences. Mol Biol Evol 16:423–427PubMedCrossRefPubMedCentralGoogle Scholar
  95. King N, Carroll SB (2001) A receptor tyrosine kinase from choanoflagellates: molecular insights into early animal evolution. PNAS 98:15032–15037PubMedCrossRefPubMedCentralGoogle Scholar
  96. King N, Rokas A (2017) Embracing uncertainty in reconstructing early animal evolution. Curr Biol 27:R1081–R1088PubMedPubMedCentralCrossRefGoogle Scholar
  97. Kobayashi M, Wada H, Satoh N (1996) Early evolution of the Metazoa and phylogenetic status of diploblasts as inferred from amino acid sequence of elongation factor-1 alpha. Mol Phylogenet Evol 5:414–422PubMedCrossRefPubMedCentralGoogle Scholar
  98. Kotpal RL (2012). Modern text book of Zoology: Invertebrates. Rastogi PublicationsGoogle Scholar
  99. Kruse M, Leys SP, Müller IM, Müller WE (1998) Phylogenetic position of the Hexactinellida within the phylum Porifera based on the amino acid sequence of the protein kinase C from Rhabdocalyptus dawsoni. J Mol Evol 46:721–728PubMedCrossRefPubMedCentralGoogle Scholar
  100. Lanna E (2015) Evo-devo of non-bilaterian animals. Genet Mol Biol 38:284–300PubMedPubMedCentralCrossRefGoogle Scholar
  101. Lapébie P, Gazave E, Ereskovsky A, Derelle R, Bézac C, Renard E, Houliston E, Borchiellini C (2009) WNT/beta-catenin signalling and epithelial patterning in the homoscleromorph sponge Oscarella. PLoS ONE 4:e5823PubMedPubMedCentralCrossRefGoogle Scholar
  102. Larroux C, Fahey B, Degnan SM, Adamski M, Rokhsar DS, Degnan BM (2007) The NK Homeobox gene cluster predates the origin of Hox genes. Curr Biol 17:706–710PubMedCrossRefPubMedCentralGoogle Scholar
  103. Larroux C, Luke GN, Koopman P, Rokhsar DS, Shimeld SM, Degnan BM (2008) Genesis and expansion of metazoan transcription factor gene classes. Mol Biol Evol 25:980–996PubMedCrossRefPubMedCentralGoogle Scholar
  104. Le Bivic A (2013) Evolution and cell physiology. 4. Why invent yet another protein complex to build junctions in epithelial cells? Am J Physiol Cell Physiol 305:C1193–C1201PubMedCrossRefPubMedCentralGoogle Scholar
  105. Leger MM, Eme L, Stairs CW, Roger AJ (2018) Demystifying eukaryote lateral gene transfer. BioEssays 40:1700242 (Response to Martin 2017  https://doi.org/10.1002/bies.201700115)CrossRefGoogle Scholar
  106. Leininger S, Adamski M, Bergum B, Guder C, Liu J, Laplante M, Bråte J, Hoffmann F, Fortunato S, Jordal S, et al (2014) Developmental gene expression provides clues to relationships between sponge and Eumetazoan body plans. Nat Commun 5:ncomms4905Google Scholar
  107. Leys SP (2015) Elements of a “nervous system” in sponges. J Exp Biol 218:581–591PubMedCrossRefPubMedCentralGoogle Scholar
  108. Leys SP, Hill A (2012) The physiology and molecular biology of sponge tissues. In: Advances in marine biology. Elsevier, pp 1–56Google Scholar
  109. Leys SP, Riesgo A (2012) Epithelia, an evolutionary novelty of metazoans. J Exp Zool (Mol Dev Evol) 318:438–447CrossRefGoogle Scholar
  110. Leys SP, Nichols SA, Adams EDM (2009) Epithelia and integration in sponges. Integr Comp Biol 49:167–177PubMedCrossRefPubMedCentralGoogle Scholar
  111. Ludeman DA, Farrar N, Riesgo A, Paps J, Leys SP (2014) Evolutionary origins of sensation in metazoans: functional evidence for a new sensory organ in sponges. BMC Evol Biol 14:3PubMedPubMedCentralCrossRefGoogle Scholar
  112. Mah JL, Leys SP (2017) Think like a sponge: the genetic signal of sensory cells in sponges. Dev Biol 431:93–100PubMedCrossRefPubMedCentralGoogle Scholar
  113. Manuel M (2001) Origine et evolution des mecanismes moleculaires controlant la morphogenese chez les metazoaires : un nouveau modele spongiaire, Sycon raphanus (calcispongia, calcaronea) thesis. Paris 11Google Scholar
  114. Manuel M, Le Parco Y (2000) Homeobox gene diversification in the calcareous sponge, Sycon raphanus. Mol Phylogenet Evol 17:97–107PubMedCrossRefPubMedCentralGoogle Scholar
  115. Marlow H, Arendt D (2014) Evolution: ctenophore genomes and the origin of neurons. Curr Biol 24:R757–R761PubMedCrossRefPubMedCentralGoogle Scholar
  116. Martin WF (2017) Too much eukaryote LGT. Bioessays 39CrossRefGoogle Scholar
  117. Medina M, Collins AG, Silberman JD, Sogin ML (2001) Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA. Proc Natl Acad Sci USA 98:9707–9712PubMedCrossRefPubMedCentralGoogle Scholar
  118. Miller PW, Clarke DN, Weis WI, Lowe CJ, Nelson WJ (2013) The Evolutionary origin of epithelial cell-cell adhesion mechanisms. Curr Top Membr 72:267–311PubMedPubMedCentralCrossRefGoogle Scholar
  119. Miller PW, Pokutta S, Mitchell JM, Chodaparambil JV, Clarke DN, Nelson WJ, Weis WI, Nichols SA (2018) Analysis of a vinculin homolog in a sponge (phylum Porifera) reveals that vertebrate-like cell adhesions emerged early in animal evolution. J Biol Chem 293:11674–11686PubMedPubMedCentralCrossRefGoogle Scholar
  120. Mills DB, Francis WR, Vargas S, Larsen M, Elemans CP, Canfield DE, Wörheide G (2018) The last common ancestor of animals lacked the HIF pathway and respired in low-oxygen environments. Elife 7Google Scholar
  121. Mohri K, Nakatsukasa M, Masuda Y, Agata K, Funayama N (2008) Toward understanding the morphogenesis of siliceous spicules in freshwater sponge: differential mRNA expression of spicule-type-specific silicatein genes in Ephydatia fluviatilis. Dev Dyn 237:3024–3039PubMedCrossRefPubMedCentralGoogle Scholar
  122. Moroz LL (2015) Convergent evolution of neural systems in ctenophores. J Exp Biol 218:598–611PubMedPubMedCentralCrossRefGoogle Scholar
  123. Moroz LL, Kohn AB (2015) unbiased view of synaptic and neuronal gene complement in Ctenophores: are there pan-neuronal and pan-synaptic genes across Metazoa? Integr Comp Biol 55:1028–1049PubMedPubMedCentralGoogle Scholar
  124. Moroz LL, Kohn AB (2016) Independent origins of neurons and synapses: insights from ctenophores. Philos Trans R Soc Lond B Biol Sci 371CrossRefGoogle Scholar
  125. Moroz LL, Kocot KM, Citarella MR, Dosung S, Norekian TP, Povolotskaya IS, Grigorenko AP, Dailey C, Berezikov E, Buckley KM et al (2014) The ctenophore genome and the evolutionary origins of neural systems. Nature 510:109–114PubMedPubMedCentralCrossRefGoogle Scholar
  126. Morris PJ (1993) The developmental role of the extracellular matrix suggests a monophyletic origin of the kingdom animalia. Evolution 47:152–165PubMedCrossRefPubMedCentralGoogle Scholar
  127. Mouchel-Vielh E, Rigolot C, Gibert JM, Deutsch JS (1998) Molecules and the body plan: the Hox genes of Cirripedes (Crustacea). Mol Phylogenet Evol 9:382–389PubMedCrossRefPubMedCentralGoogle Scholar
  128. Müller WE (1995) Molecular phylogeny of Metazoa (animals): monophyletic origin. Naturwissenschaften 82:321–329PubMedCrossRefPubMedCentralGoogle Scholar
  129. Müller WEG (1998) Molecular phylogeny of Eumetazoa: genes in sponges (Porifera) give evidence for monophyly of animals. In: Molecular evolution: evidence for monophyly of metazoa. Springer, pp 89–132Google Scholar
  130. Müller WEG, Wang X, Grebenjuk VA, Korzhev M, Wiens M, Schlossmacher U, Schröder HC (2012) Common genetic denominators for Ca++-based skeleton in Metazoa: role of osteoclast-stimulating factor and of carbonic anhydrase in a calcareous sponge. PLoS ONE 7:e34617PubMedPubMedCentralCrossRefGoogle Scholar
  131. Murray PS, Zaidel-Bar R (2014) Pre-metazoan origins and evolution of the cadherin adhesome. Biol Open 3:1183–1195PubMedPubMedCentralCrossRefGoogle Scholar
  132. Nakanishi N, Sogabe S, Degnan BM (2014) Evolutionary origin of gastrulation: insights from sponge development. BMC Biol 12:26PubMedPubMedCentralCrossRefGoogle Scholar
  133. Nakanishi N, Stoupin D, Degnan SM, Degnan BM (2015) Sensory flask cells in sponge larvae regulate metamorphosis via calcium signaling. Integr Comp Biol 55:1018–1027PubMedCrossRefPubMedCentralGoogle Scholar
  134. Nedelcu AM (2019) Independent evolution of complex development in animals and plants: deep homology and lateral gene transfer. Dev Genes Evol 229:25–34PubMedCrossRefPubMedCentralGoogle Scholar
  135. Nichols SA, Dirks W, Pearse JS, King N (2006) Early evolution of animal cell signaling and adhesion genes. Proc Natl Acad Sci USA 103:12451–12456PubMedCrossRefPubMedCentralGoogle Scholar
  136. Nichols SA, Roberts BW, Richter DJ, Fairclough SR, King N (2012) Origin of metazoan cadherin diversity and the antiquity of the classical cadherin/β-catenin complex. Proc Natl Acad Sci USA 109:13046–13051PubMedCrossRefPubMedCentralGoogle Scholar
  137. Nickel M (2010) Evolutionary emergence of synaptic nervous systems: what can we learn from the non-synaptic, nerveless Porifera? Invertebr Biol 129:1–16CrossRefGoogle Scholar
  138. Nosenko T, Schreiber F, Adamska M, Adamski M, Eitel M, Hammel J, Maldonado M, Müller WEG, Nickel M, Schierwater B et al (2013) Deep metazoan phylogeny: when different genes tell different stories. Mol Phylogenet Evol 67:223–233PubMedCrossRefPubMedCentralGoogle Scholar
  139. Oakley TH (2017) Furcation and fusion: the phylogenetics of evolutionary novelty. Dev Biol 431:69–76PubMedCrossRefPubMedCentralGoogle Scholar
  140. Oxusoff L, Préa P, Perez Y (2018) A complete logical approach to resolve the evolution and dynamics of mitochondrial genome in bilaterians. PLoS ONE 13:e0194334PubMedPubMedCentralCrossRefGoogle Scholar
  141. Parra-Acero H, Ros-Rocher N, Perez-Posada A, Kożyczkowska A, Sánchez-Pons N, Nakata A, Suga H, Najle SR, Ruiz-Trillo I (2018) Transfection of Capsaspora owczarzaki, a close unicellular relative of animals. Development 145Google Scholar
  142. Pastrana CC, DeBiasse MB, Ryan JF (2019) Sponges lack ParaHox genes. Genome Biol EvolGoogle Scholar
  143. Pawlowski J, Montoya-Burgos JI, Fahrni JF, Wüest J, Zaninetti L (1996) Origin of the Mesozoa inferred from 18S rRNA gene sequences. Mol Biol Evol 13:1128–1132PubMedCrossRefPubMedCentralGoogle Scholar
  144. Peña JF, Alié A, Richter DJ, Wang L, Funayama N, Nichols SA (2016) Conserved expression of vertebrate microvillar gene homologs in choanocytes of freshwater sponges. Evodevo 7:13PubMedPubMedCentralCrossRefGoogle Scholar
  145. Peterson KJ, Butterfield NJ (2005) Origin of the Eumetazoa: testing ecological predictions of molecular clocks against the Proterozoic fossil record. Proc Natl Acad Sci USA 102:9547–9552PubMedCrossRefPubMedCentralGoogle Scholar
  146. Peterson KJ, Eernisse DJ (2001) Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18S rDNA gene sequences. Evol Dev 3:170–205PubMedCrossRefPubMedCentralGoogle Scholar
  147. Pett W, Adamski M, Adamska M, Francis WR, Eitel M, Pisani D, Wörheide G (2019) The role of homology and orthology in the phylogenomic analysis of metazoan gene content. Mol Biol Evol 36:643–649PubMedCrossRefPubMedCentralGoogle Scholar
  148. Philippe H, Derelle R, Lopez P, Pick K, Borchiellini C, Boury-Esnault N, Vacelet J, Renard E, Houliston E, Quéinnec E et al (2009) Phylogenomics revives traditional views on deep animal relationships. Curr Biol 19:706–712PubMedCrossRefPubMedCentralGoogle Scholar
  149. Philippe H, Brinkmann H, Lavrov DV, Littlewood DTJ, Manuel M, Wörheide G, Baurain D (2011) Resolving difficult phylogenetic questions: why more sequences are not enough. PLoS Biol 9:e1000602PubMedPubMedCentralCrossRefGoogle Scholar
  150. Pick KS, Philippe H, Schreiber F, Erpenbeck D, Jackson DJ, Wrede P, Wiens M, Alié A, Morgenstern B, Manuel M et al (2010) Improved phylogenomic taxon sampling noticeably affects nonbilaterian relationships. Mol Biol Evol 27:1983–1987PubMedPubMedCentralCrossRefGoogle Scholar
  151. Pisani D, Pett W, Dohrmann M, Feuda R, Rota-Stabelli O, Philippe H, Lartillot N, Wörheide G (2015) Genomic data do not support comb jellies as the sister group to all other animals. Proc Natl Acad Sci USA 112:15402–15407PubMedCrossRefPubMedCentralGoogle Scholar
  152. Ramulu HG, Raoult D, Pontarotti P (2012) The rhizome of life: what about metazoa? Front Cell Infect Microbiol 2:50PubMedPubMedCentralCrossRefGoogle Scholar
  153. Renard E, Vacelet J, Gazave E, Lapébie P, Borchiellini C, Ereskovsky AV (2009) Origin of the neuro-sensory system: new and expected insights from sponges. Integr Zool 4:294–308PubMedCrossRefPubMedCentralGoogle Scholar
  154. Renard E, Eve G, Fierro-Constain L, Schenkelaars Q, Ereskovsky A, Vacelet JV, Borchiellini CB (2013). Porifera (Sponges): recent knowledge and new perspectives. In eLS, John Wiley & Sons, Ltd (Ed.). https://doi.org/10.1002/9780470015902.a0001582.pub2  
  155. Renard E, Leys SP, Wörheide G, Borchiellini C (2018) Understanding animal evolution: the added value of sponge transcriptomics and genomics. BioEssays 40:1700237CrossRefGoogle Scholar
  156. Rentzsch F, Layden M, Manuel M (2017) The cellular and molecular basis of cnidarian neurogenesis. Wiley Interdisc Rev Dev Biol 6:e257CrossRefGoogle Scholar
  157. Revilla-I-Domingo R, Schmidt C, Zifko C, Raible F (2018) Establishment of transgenesis in the demosponge Suberites domuncula. Genetics 210:435–443PubMedPubMedCentralCrossRefGoogle Scholar
  158. Reynolds AS (2019) Ernst Haeckel and the philosophy of sponges. Theory BiosciGoogle Scholar
  159. Richards GS, Degnan BM (2009) The dawn of developmental signaling in the metazoa. Cold Spring Harb Symp Quant Biol 74:81–90PubMedCrossRefPubMedCentralGoogle Scholar
  160. Richards GS, Degnan BM (2012) The expression of delta ligands in the sponge Amphimedon queenslandica suggests an ancient role for Notch signaling in metazoan development. Evodevo 3:15PubMedPubMedCentralCrossRefGoogle Scholar
  161. Richards GS, Simionato E, Perron M, Adamska M, Vervoort M, Degnan BM (2008) Sponge genes provide new insight into the evolutionary origin of the neurogenic circuit. Curr Biol 18:1156–1161PubMedCrossRefPubMedCentralGoogle Scholar
  162. Richter DJ, Fozouni P, Eisen MB, King N (2018) Gene family innovation, conservation and loss on the animal stem lineage. Elife 7Google Scholar
  163. Riesgo A, Farrar N, Windsor PJ, Giribet G, Leys SP (2014) The analysis of eight transcriptomes from all poriferan classes reveals surprising genetic complexity in sponges. Mol Biol Evol 31:1102–1120PubMedCrossRefGoogle Scholar
  164. Rivera A, Winters I, Rued A, Ding S, Posfai D, Cieniewicz B, Cameron K, Gentile L, Hill A (2013) The evolution and function of the Pax/Six regulatory network in sponges. Evol Dev 15:186–196PubMedCrossRefPubMedCentralGoogle Scholar
  165. Rivera AS, Hammel JU, Haen KM, Danka ES, Cieniewicz B, Winters IP, Posfai D, Wörheide G, Lavrov DV, Knight SW et al (2011) RNA interference in marine and freshwater sponges: actin knockdown in Tethya wilhelma and Ephydatia muelleri by ingested dsRNA expressing bacteria. BMC Biotechnol 11:67PubMedPubMedCentralCrossRefGoogle Scholar
  166. Russell JJ, Theriot JA, Sood P, Marshall WF, Landweber LF, Fritz-Laylin L, Polka JK, Oliferenko S, Gerbich T, Gladfelter A, et al (2017) Non-model model organisms. BMC Biol 15(1):55Google Scholar
  167. Ryan JF (2014) Did the ctenophore nervous system evolve independently? Zoology (Jena) 117:225–226CrossRefGoogle Scholar
  168. Ryan JF, Chiodin M (2015) Where is my mind? How sponges and placozoans may have lost neural cell types. Philos Trans R Soc Lond B Biol Sci 370CrossRefGoogle Scholar
  169. Sakarya O, Armstrong KA, Adamska M, Adamski M, Wang I-F, Tidor B, Degnan BM, Oakley TH, Kosik KS (2007) A post-synaptic scaffold at the origin of the animal kingdom. PLoS ONE 2:e506PubMedPubMedCentralCrossRefGoogle Scholar
  170. Schenkelaars Q, Fierro-Constain L, Renard E, Hill AL, Borchiellini C (2015) Insights into Frizzled evolution and new perspectives. Evol Dev 17:160–169PubMedCrossRefPubMedCentralGoogle Scholar
  171. Schenkelaars Q, Fierro-Constain L, Renard E, Borchiellini C (2016a) Retracing the path of planar cell polarity. BMC Evol Biol 16:69Google Scholar
  172. Schenkelaars Q, Quintero O, Hall C, Fierro-Constain L, Renard E, Borchiellini C, Hill AL (2016b) ROCK inhibition abolishes the establishment of the aquiferous system in Ephydatia muelleri (Porifera, Demospongiae). Dev Biol 412:298–310PubMedCrossRefPubMedCentralGoogle Scholar
  173. Schenkelaars Q, Pratlong M, Kodjabachian L, Fierro-Constain L, Vacelet J, Le Bivic A, Renard E, Borchiellini C (2017) Animal multicellularity and polarity without Wnt signaling. Sci Rep 7:15383PubMedPubMedCentralCrossRefGoogle Scholar
  174. Schippers KJ, Nichols SA, Wittkopp P (2018) Evidence of Signaling and adhesion roles for β-Catenin in the sponge Ephydatia muelleri. Mol Biol Evol 35:1407–1421PubMedCrossRefPubMedCentralGoogle Scholar
  175. Sebé-Pedrós A, Ruiz-Trillo I (2017) Evolution and classification of the T-Box transcription factor family. Curr Top Dev Biol 122:1–26PubMedCrossRefPubMedCentralGoogle Scholar
  176. Sebé-Pedrós A, Ariza-Cosano A, Weirauch MT, Leininger S, Yang A, Torruella G, Adamski M, Adamska M, Hughes TR, Gómez-Skarmeta JL et al (2013) Early evolution of the T-box transcription factor family. Proc Natl Acad Sci USA 110:16050–16055PubMedCrossRefPubMedCentralGoogle Scholar
  177. Sebé-Pedrós A, Degnan BM, Ruiz-Trillo I (2017) The origin of Metazoa: a unicellular perspective. Nat Rev Genet 18:498–512PubMedCrossRefPubMedCentralGoogle Scholar
  178. Sebé-Pedrós A, Chomsky E, Pang K, Lara-Astiaso D, Gaiti F, Mukamel Z, Amit I, Hejnol A, Degnan BM, Tanay A (2018) Early metazoan cell type diversity and the evolution of multicellular gene regulation. Nat Ecol Evol 2:1176–1188PubMedPubMedCentralCrossRefGoogle Scholar
  179. Simion P, Philippe H, Baurain D, Jager M, Richter DJ, Di Franco A, Roure B, Satoh N, Quéinnec É, Ereskovsky A et al (2017) A large and consistent phylogenomic dataset supports sponges as the sister group to all other animals. Curr Biol 27:958–967PubMedCrossRefPubMedCentralGoogle Scholar
  180. Simpson TL (1984) The cell biology of sponges. Springer-Verlag New York Inc.Google Scholar
  181. Slack JM, Holland PW, Graham CF (1993) The zootype and the phylotypic stage. Nature 361:490–492PubMedCrossRefPubMedCentralGoogle Scholar
  182. Sogabe S, Nakanishi N, Degnan BM (2016) The ontogeny of choanocyte chambers during metamorphosis in the demosponge Amphimedon queenslandica. EvoDevo 7:6. https://doi.org/10.1186/s13227-016-0042-x
  183. Sperling EA, Pisani D, Peterson KJ (2007) Poriferan paraphyly and its implications for Precambrian palaeobiology. Geol Soc 286:355–368 London, Special PublicationsCrossRefGoogle Scholar
  184. Sperling EA, Peterson KJ, Pisani D (2009) Phylogenetic-signal dissection of nuclear housekeeping genes supports the paraphyly of sponges and the monophyly of Eumetazoa. Mol Biol Evol 26:2261–2274PubMedCrossRefPubMedCentralGoogle Scholar
  185. Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier MEA, Mitros T, Richards GS, Conaco C, Dacre M, Hellsten U et al (2010) The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466:720–726PubMedPubMedCentralCrossRefGoogle Scholar
  186. Stolfi A, Christiaen L (2012) Genetic and genomic toolbox of the chordate Ciona intestinalis. Genetics 192:55–66PubMedPubMedCentralCrossRefGoogle Scholar
  187. Suga H, Ono K, Miyata T (1999) Multiple TGF-beta receptor related genes in sponge and ancient gene duplications before the parazoan-eumetazoan split. FEBS Lett 453:346–350PubMedCrossRefPubMedCentralGoogle Scholar
  188. Suga H, Chen Z, de Mendoza A, Sebé-Pedrós A, Brown MW, Kramer E, Carr M, Kerner P, Vervoort M, Sánchez-Pons N et al (2013) The capsaspora genome reveals a complex unicellular prehistory of animals. Nat Commun 4:2325PubMedPubMedCentralCrossRefGoogle Scholar
  189. Syvanen M (1984) The evolutionary implications of mobile genetic elements. Annu Rev Genet 18:271–293PubMedCrossRefPubMedCentralGoogle Scholar
  190. Tickle C, Urrutia AO (2017) Perspectives on the history of evo-devo and the contemporary research landscape in the genomics era. Philos Trans Roy Soc B: Biol Sci 372:20150473CrossRefGoogle Scholar
  191. Tompkins-Macdonald GJ, Gallin WJ, Sakarya O, Degnan B, Leys SP, Boland LM (2009) Expression of a poriferan potassium channel: insights into the evolution of ion channels in metazoans. J Exp Biol 212:761–767PubMedPubMedCentralCrossRefGoogle Scholar
  192. Ueda N, Richards GS, Degnan BM, Kranz A, Adamska M, Croll RP, Degnan SM (2016) An ancient role for nitric oxide in regulating the animal pelagobenthic life cycle: evidence from a marine sponge. Sci Rep 6:37546PubMedPubMedCentralCrossRefGoogle Scholar
  193. Uzzell T, Corbin KW (1971) Fitting discrete probability distributions to evolutionary events. Science 172:1089–1096PubMedCrossRefPubMedCentralGoogle Scholar
  194. Voigt O, Adamski M, Sluzek K, Adamska M (2014) Calcareous sponge genomes reveal complex evolution of α-carbonic anhydrases and two key biomineralization enzymes. BMC Evol Biol 14:230PubMedPubMedCentralCrossRefGoogle Scholar
  195. Wells GD, Tang Q-Y, Heler R, Tompkins-MacDonald GJ, Pritchard EN, Leys SP, Logothetis DE, Boland LM (2012) A unique alkaline pH-regulated and fatty acid-activated tandem pore domain potassium channel (K2P) from a marine sponge. J Exp Biol 215:2435–2444PubMedPubMedCentralCrossRefGoogle Scholar
  196. Whelan NV, Kocot KM, Halanych KM (2015) Employing phylogenomics to resolve the relationships among Cnidarians, Ctenophores, Sponges, Placozoans, and Bilaterians. Integr Comp Biol 55:1084–1095PubMedCrossRefPubMedCentralGoogle Scholar
  197. Whelan NV, Kocot KM, Moroz TP, Mukherjee K, Williams P, Paulay G, Moroz LL, Halanych KM (2017). Ctenophore relationships and their placement as the sister group to all other animals. Nat Ecol Evol 1(11):1737-1746. Epub 2017 Oct 9. https://doi.org/10.1038/s41559-017-0331-3CrossRefGoogle Scholar
  198. Whittaker RH (1959) On the broad classification of organisms. Q Rev Biol 34:210–226PubMedCrossRefPubMedCentralGoogle Scholar
  199. Windsor PJ, Leys SP (2010) Wnt signaling and induction in the sponge aquiferous system: evidence for an ancient origin of the organizer. Evol Dev 12:484–493PubMedCrossRefPubMedCentralGoogle Scholar
  200. Windsor Reid PJ, Matveev E, McClymont A, Posfai D, Hill AL, Leys SP (2018) Wnt signaling and polarity in freshwater sponges. BMC Evol Biol 18:12PubMedPubMedCentralCrossRefGoogle Scholar
  201. Zrzavý J, Mihulka S, Kepka P, Bezděk A, Tietz D (1998) Phylogeny of the Metazoa based on morphological and 18S ribosomal DNA evidence. Cladistics 14:249–285CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Quentin Schenkelaars
    • 1
    • 2
  • Amélie Vernale
    • 1
    • 3
  • Laura Fierro-Constaín
    • 1
  • Carole Borchiellini
    • 1
  • Emmanuelle Renard
    • 1
    • 3
    Email author
  1. 1.Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, FranceMarseilleFrance
  2. 2.Department of Genetics and Evolution, Faculty of SciencesInstitute of Genetics and Genomics in Geneva (IGe3), University of GenevaGenevaSwitzerland
  3. 3.Aix Marseille Univ, CNRS, IBDM, UMR 7288MarseilleFrance

Personalised recommendations