Advertisement

The First Universal Common Ancestor (FUCA) as the Earliest Ancestor of LUCA’s (Last UCA) Lineage

  • Francisco ProsdocimiEmail author
  • Marco V. José
  • Sávio Torres de FariasEmail author
Chapter

Abstract

The existence of a common ancestor to all living organisms in Earth is a necessary corollary of Darwin idea of common ancestry. The last universal common ancestor (LUCA) has been normally considered as the ancestor of cellular organisms that originated the three domains of life: Bacteria, Archaea and Eukarya. Recent studies about the nature of LUCA indicate that this first organism should present hundreds of genes and a complex metabolism. Trying to bring another of Darwin ideas into the origins of life discussion, we went back into the prebiotic chemistry trying to understand how LUCA could be originated under gradualist assumptions. Along this line of reasoning, it became clear to us that the definition of another ancestral should be of particular relevance to the understanding about the emergence of biological systems. Together with the view of biology as a language for chemical translation, on which proteins are encoded into nucleic acids polymers, we glimpse a point in the deep past on which this translation mechanism could have taken place. Thus, we propose the emergence of this process shared by all biological systems as a point of interest and propose the existence of this pre-cellular entity named FUCA, as the first universal common ancestor. FUCA was born in the very instant on which RNA-world replicators started to be capable to catalyze the bonding of amino acids into oligopeptides. FUCA has been considered mature when the translation system apparatus has been assembled together with the establishment of a primeval, possibly error-prone genetic code. This is FUCA, the earliest ancestor of LUCA’s lineage.

Keywords

Origin of life LUCA FUCA RNA world PTC Archaea Translation system 

Notes

Acknowledgements

We would like to thank FAPERJ (CNE E-26/202.780/2018) for funding FP. MVJ was financially supported by PAPIIT-IN224015; UNAM; México.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Caetano-Anollés G (2015) Ancestral insertions and expansions of rRNA do not support an origin of the ribosome in its peptidyl transferase center. J Mol Evol 80(3–4):162–165.  https://doi.org/10.1007/s00239-015-9677-9CrossRefPubMedPubMedCentralGoogle Scholar
  2. Darwin CR (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life, 1st edn. John Murray, LondonGoogle Scholar
  3. Dawkins R (1978, ©1976) The selfish gene. Oxford University Press, New YorkGoogle Scholar
  4. Delaye L, Becerra A, Lazcano A (2005) The last common ancestor: what’s in a name? Orig Life Evol Biosph 35(6):537–554CrossRefGoogle Scholar
  5. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, Xue C, Marinov GK, Khatun J, Williams BA, Zaleski C, Rozowsky J, Röder M, Kokocinski F, Abdelhamid RF, Alioto T, Antoshechkin I, Baer MT, Bar NS, Batut P, Bell K, Bell I, Chakrabortty S, Chen X, Chrast J, Curado J, Derrien T, Drenkow J, Dumais E, Dumais J, Duttagupta R, Falconnet E, Fastuca M, Fejes-Toth K, Ferreira P, Foissac S, Fullwood MJ, Gao H, Gonzalez D, Gordon A, Gunawardena H, Howald C, Jha S, Johnson R, Kapranov P, King B, Kingswood C, Luo OJ, Park E, Persaud K, Preall JB, Ribeca P, Risk B, Robyr D, Sammeth M, Schaffer L, See LH, Shahab A, Skancke J, Suzuki AM, Takahashi H, Tilgner H, Trout D, Walters N, Wang H, Wrobel J, Yu Y, Ruan X, Hayashizaki Y, Harrow J, Gerstein M, Hubbard T, Reymond A, Antonarakis SE, Hannon G, Giddings MC, Ruan Y, Wold B, Carninci P, Guigó R, Gingeras TR (2012) Landscape of transcription in human cells. Nature 489(7414):101–108.  https://doi.org/10.1038/nature11233 (PubMed PMID: 22955620; PubMed Central PMCID: PMC3684276)CrossRefPubMedPubMedCentralGoogle Scholar
  6. Farias ST, do Rêgo TG, José MV (2014) Evolution of transfer RNA and the origin of the translation system. Front Genet 5:303.  https://doi.org/10.3389/fgene.2014.00303 (eCollection 2014)
  7. Farias ST, Rêgo TG, José MV (2016) tRNA core hypothesis for the transition from the RNA world to the ribonucleoprotein world. Life (Basel) 6(2):pii: E15.  https://doi.org/10.3390/life6020015CrossRefGoogle Scholar
  8. Forterre P (2002) The origin of DNA genomes and DNA replication proteins. Curr Opin Microbiol 5(5):525–532 (Review. PubMed PMID: 12354562)CrossRefGoogle Scholar
  9. Forterre P (2006) The origin of viruses and their possible roles in major evolutionary transitions. Virus Res 117(1):5–16 (Epub 14 Feb 2006. Review. PubMed PMID: 16476498)CrossRefGoogle Scholar
  10. Forterre P (2013) The great virus comeback. Biol Aujourdhui 207(3):153–168.  https://doi.org/10.1051/jbio/2013018 (Epub 13 Dec 2013. Review. French. PubMed PMID: 24330969)CrossRefGoogle Scholar
  11. Forterre P, Gaïa M (2016) Giant viruses and the origin of modern eukaryotes. Curr Opin Microbiol 31:44–49.  https://doi.org/10.1016/j.mib.2016.02.001CrossRefPubMedGoogle Scholar
  12. Gilbert W (1986) The RNA world. Nature 319:618CrossRefGoogle Scholar
  13. Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35(3 Pt 2):849–857CrossRefGoogle Scholar
  14. Harish A, Abroi A, Gough J, Kurland C (2016) Did viruses evolve as a distinct supergroup from common ancestors of cells? Genome Biol Evol 8(8):2474–2481.  https://doi.org/10.1093/gbe/evw175CrossRefPubMedPubMedCentralGoogle Scholar
  15. Higgs PG, Lehman N (2015) The RNA world: molecular cooperation at the origins of life. Nat Rev Genet 16(1):7–17.  https://doi.org/10.1038/nrg3841CrossRefPubMedGoogle Scholar
  16. Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR (1982) Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of tetrahymena. Cell 31(1):147–157CrossRefGoogle Scholar
  17. Miller SL (1953) A production of amino acids under possible primitive earth conditions. Science 117(3046):528–529 (PubMed PMID: 13056598)CrossRefGoogle Scholar
  18. Nasir A, Caetano-Anollés G (2015) A phylogenomic data-driven exploration of viral origins and evolution. Sci Adv 1(8):e1500527.  https://doi.org/10.1126/sciadv.1500527CrossRefPubMedPubMedCentralGoogle Scholar
  19. Parker ET, Cleaves HJ, Dworkin JP, Glavin DP, Callahan M, Aubrey A, Lazcano A, Bada JL (2011) Primordial synthesis of amines and amino acids in a 1958 Miller H2S-rich spark discharge experiment. Proc Natl Acad Sci USA 108(14):5526–5531.  https://doi.org/10.1073/pnas.1019191108CrossRefPubMedGoogle Scholar
  20. Penny D, Poole A (1999) The nature of the last universal common ancestor. Curr Opin Genet Dev 9(6):672–677CrossRefGoogle Scholar
  21. Petrov AS, Gulen B, Norris AM, Kovacs NA, Bernier CR, Lanier KA, Fox GE, Harvey SC, Wartell RM, Hud NV, Williams LD (2015) History of the ribosome and the origin of translation. Proc Natl Acad Sci USA 112(50):15396–15401.  https://doi.org/10.1073/pnas.1509761112CrossRefPubMedGoogle Scholar
  22. Raymann K, Brochier-Armanet C, Gribaldo S (2015) The two-domain tree of life is linked to a new root for the archaea. Proc Natl Acad Sci USA 112(21):6670–6675.  https://doi.org/10.1073/pnas.1420858112 (Epub 11 May 2015. PubMed PMID: 25964353; PubMed Central PMCID: PMC4450401)CrossRefGoogle Scholar
  23. Watson JD, Crick FHC (1953) A structure for deoxyribose nucleic acid. Nature 171(4356):737–738CrossRefGoogle Scholar
  24. Weiss MC, Sousa FL, Mrnjavac N, Neukirchen S, Roettger M, Nelson-Sathi S, Martin WF (2016) The physiology and habitat of the last universal common ancestor. Nat Microbiol 1(9):16116.  https://doi.org/10.1038/nmicrobiol.2016.116
  25. Williams TA, Foster PG, Nye TM, Cox CJ, Embley TM (2012) A congruent phylogenomic signal places eukaryotes within the archaea. Proc Biol Sci 279(1749):4870–4879.  https://doi.org/10.1098/rspb.2012.1795 (Epub 24 Oct 2012. PubMed PMID: 23097517; PubMed Central PMCID: PMC3497233)CrossRefGoogle Scholar
  26. Woese CR, Fox GE (1977a) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 74(11):5088–5090 (PubMed PMID: 270744; PubMed Central PMCID: PMC432104)CrossRefGoogle Scholar
  27. Woese CR, Fox GE (1977b) The concept of cellular evolution. J Mol Evol 10(1):1–6 (PubMed PMID: 903983)CrossRefGoogle Scholar
  28. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains archaea, bacteria, and eucarya. Proc Natl Acad Sci USA 87(12):4576–4579CrossRefGoogle Scholar
  29. Zamudio GS, José MV (2018) Identity elements of tRNA as derived from information analysis. Orig Life Evol Biosph 48(1):73–81.  https://doi.org/10.1007/s11084-017-9541-6 (Epub 28 Jun 2017. PubMed PMID: 28660466)CrossRefPubMedGoogle Scholar
  30. Zaremba-Niedzwiedzka K, Caceres EF, Saw JH, Bäckström D, Juzokaite L, Vancaester E, Seitz KW, Anantharaman K, Starnawski P, Kjeldsen KU, Stott MB, Nunoura T, Banfield JF, Schramm A, Baker BJ, Spang A, Ettema TJ (2017) Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541(7637):353–358.  https://doi.org/10.1038/nature21031 (Epub 11 Jan 2017. PubMed PMID: 28077874)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratório de Biologia Teórica e de SistemasInstituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Theoretical Biology GroupInstituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de MéxicoMexico CityMexico
  3. 3.Laboratório de Genética Evolutiva Paulo Leminsk, Departamento de Biologia MolecularUniversidade Federal da ParaíbaJoão PessoaBrazil

Personalised recommendations