Skip to main content

Formation of Nucleosides and Nucleotides in Chemical Evolution

  • Chapter
  • First Online:

Abstract

Nucleosides and nucleotides are important biomolecules. Following Gilbert’s (Nature 319:618, 1986) proposal of an “RNA world,” various processes for the formation of nucleosides (from nucleobases and ribose) and the polymerization of nucleotides have been suggested. Problems associated with the formation of RNA have also been pointed out. The constituents of RNA are nucleobases, ribose, and phosphate. Ribose has five conformational isomers or conformers, each of which can react with a nucleobase. In life, however, only the β-furanose form of ribose is used. Curiously, when a nucleobase reacts with ribose in an aqueous solution, only a small amount of nucleoside with a β-ribofuranose component is detectable in the total products. Thus, the RNA world hypothesis has reached a deadlock. Here, we summarize the important points in the synthesis of nucleobases and ribose. We also describe the selective formation of nucleosides and touch on the one-pot synthesis of nucleotides.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akouche M, Jaber M, Maurel M-C, Lambert J-F, Georgelin T (2017) Phosphoribosyl pyrophosphate: a molecular vestige of the origin of life on minerals. Angew Chem Int Ed 56:7920–7923. https://doi.org/10.1002/anie201702633

    Article  CAS  Google Scholar 

  • Akouche M, Jaber M, Zins E-M, Maurel M-C, Lambert J-F, Georgelin T (2016) Thermal behavior of d-ribose adsorbed on silica: effect of inorganic salt coadsorption and significance for prebiotic chemistry. Chem Eur J 22:15834–15846

    Article  CAS  Google Scholar 

  • Amaral AF, Marques MM, da Silva JAL, da Silva JJRF (2008) Interactions of d-ribose with polyatomic anions, and alkaline and alkaline-earth cations: possible clues to environmental synthesis conditions in the pre-RNA world. New J Chem 32:2043–2049

    Article  CAS  Google Scholar 

  • Becker S, Thoma I, Deutsch A, Gehrke T, Mayer P, Zipse H, Carell T (2016) A high-yielding strictly regioselective prebiotic purine nucleoside formation pathway. Science 352:833–836

    Article  CAS  Google Scholar 

  • Becker S, Schneider C, Okamura H, Crisp A, Amatov T, Dejmek A, Carell T (2018) Wet-dry cycles enable the parallel origin of canonical and non-canonical nucleosides by continuous synthesis. Nat. Com 9:163. https://doi.org/10.1038/s41467-017-02639-1

    Article  CAS  Google Scholar 

  • Benner SA, Kim H-J, Carrigan MA (2012) Asphalt, water and the prebiotic synthesis of ribose, ribonucleoside and RNA. Acc Chem Res 45:2025–2034

    Article  CAS  Google Scholar 

  • Cech TR (1986) A model for the RNA-catalyzed replication of RNA. Proc Natl Acad Sci USA 83:4360–4363

    Article  CAS  Google Scholar 

  • Chittenden GJF, Schwartz A (1976) Possible pathway for prebiotic uracil synthesis by photodehydrogenation. Nature 263:350–351

    Article  CAS  Google Scholar 

  • Civiš S, Szabla R, Szyja BM, Smykowski D, Ivanek O, Knížek A, Kubelik P, Šponer J, Ferus M, Šponer JE (2016) TiO2-calayzed synthesis of sugars from formaldehyde in extraterrestrial impacts on the early Earth. Sci Rep 6:23199. https://doi.org/10.1038/srep23199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cortes SJ, Mega TL, Van Etten RL (1991) The 18O isotope shift in 13C nuclear magnetic resonance spectroscopy. 14. kinetics of oxygen exchange at the anomeric carbon of D-ribose and D-2-deoxyribose. J Org Chem 56:943–947

    Article  CAS  Google Scholar 

  • Ferus M, Nesvorný D, Šponer J, Kubelík P, Michalcíková R, Shestivská V, Šponer JE, Civiš S (2015) High-energy chemistry of formamide: a unified mechanism of nulcoebase formation. PNAS 112:657–662. https://doi.org/10.1073/pnas.1412072111

    Article  CAS  PubMed  Google Scholar 

  • Fiore M, Strazewski P (2016) Bringing prebiotic nucleosides and nucleotides down to Earth. Angew Chem Int Ed 55:13930–13933. https://doi.org/10.1002/anie.201606232

    Article  CAS  Google Scholar 

  • Fuller WD, Sanchez RA, Orgel LE (1972) Studies in prebiotic synthesis VI. Synthesis of purine nucleosides. J Mol Biol 67:25–33

    Article  CAS  Google Scholar 

  • Furukawa Y, Kakegawa T (2017) Borate and the origin of RNA: a model for the precursors to life. Elements 13:261–265

    Article  CAS  Google Scholar 

  • Furukawa Y, Horiuchi M, Kakegawa T (2013) Selective stabilization of ribose by borate. Origins Life Evol Biosph 43:353–361

    Article  Google Scholar 

  • Furukawa Y, Kim HJ, Hutter D, Benner SA (2015) Abiotic regioselective phosphorylation of adenosine with borate in formamide. Astrobiology 15:259–267

    Article  CAS  Google Scholar 

  • Gabel NW, Ponnamperuma C (1967) Model of origin of monosaccharides. Nature 216:453–455

    Article  CAS  Google Scholar 

  • Gilbert W (1986) The RNA world. Nature 319:618

    Article  Google Scholar 

  • Hu H, Xue J, Wen X, Li W, Zhang C, Yang L, Xu Y, Zhao G, Bu X, Liu K, Chen J, Wu J (2013) Sugar-metal ion interactions: the complicated coordination structures of Cesium ion with D-ribose and myo-inositol. Inorg Chem 52:13132–13145

    Article  CAS  Google Scholar 

  • Kim H-J, Kim J (2019) A prebiotic synthesis of canonical pyrimidine and purine ribonucleotides. Astrobiology. https://doi.org/10.1089/ast.2018.1935

    Article  PubMed  PubMed Central  Google Scholar 

  • Lambert JB, Lu G, Singer SR, Kolb VM (2004) Silicate complexes of sugars in aqueous solution. J Am Chem Soc 126:9611–9625

    Article  CAS  Google Scholar 

  • Larralde R, Robertson MP, Miller SL (1995) Rates of decomposition of ribose and other sugars: implications for chemical evolution. Proc Natl Acad Sci USA 92:8158–8160

    Article  CAS  Google Scholar 

  • Maurel M-C, Leclerc F (2016) From foundation stones to life: Concepts and results. Elements 12:407–412

    Article  CAS  Google Scholar 

  • Menor-Salván C, Marín-Yaseli MR (2013) A new route for the prebiotic synthesis of nucleobases and hydantoins in water/ice solutions involving the photochemistry of acetylene. Chem Eur J 19:6488–6497

    Article  Google Scholar 

  • Miyawaki S, Murasawa K, Kobayashi K, Sawaoka AB (2000) Abiotic synthesis of guanine with high-temperature plasma. Origin Life Evol Biosph 30:557–566

    Article  Google Scholar 

  • Nam I, Nam HG, Zare RN (2018) Abiotic synthesis of purine and pyrimidine ribonucleosides in aqueous microdroplets. PNAS 115:36–40. https://doi.org/10.1073/pnas.1718559115

    Article  CAS  PubMed  Google Scholar 

  • Orgel LE (2004) Prebiotic chemistry and the origin of the RNA world. Crit Rev Biochem Mol Biol 39:99–123

    Article  CAS  Google Scholar 

  • Powner MW, Gerland B, Sutherland JD (2009) Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459:239–242

    Article  CAS  Google Scholar 

  • Quesada-Moreno MM, Azofra LM, Avilés-Moreno JR, Alkorta I, Elguero J, López-González JJ (2013) Conformational preference and chiroptical response of carbohydrates D-ribose and 2-deoxy-D-ribose in aqueous and solid phases. J Phys Chem B 117:14599–14614

    Article  CAS  Google Scholar 

  • Ricardo A, Carrigan MA, Olcott AN, Benner SA (2004) Borate minerals stabilize ribose. Science 303:196

    Article  CAS  Google Scholar 

  • Rich A (1962) On the problems of evolution and biochemical information transfer. In: Kasha M, Pullman B (eds) Horizons in biochemistry. Academic Press, New York, pp 103–126

    Google Scholar 

  • Robertson MP, Miller SL (1995) An efficient prebiotic synthesis of cytosine and uracil. Nature 375:772–774

    Article  CAS  Google Scholar 

  • Robertson MP, Joyce GF (2012) The origins of the RNA world. Cold Spring Harb Perspect Biol 4:a003608. https://doi.org/10.1101/cshperspect.a003608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saladino R, Bizzarri BM, Botta L, Šponer J, Šponer JE, Georgelin T, Jaber M, Rigaud B, Kapralov M, Timoshenko GN, Rozanov A, Krasavin E, Timperio AM, Mauro ED (2017) Proton irradiation: a key to the challenge of N-glycosidic bond formation in a prebiotic context. Sci Rep 7:14709. https://doi.org/10.1038/s41598-017-15392-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saladino R, Carota E, Botta G, Kapralov M, Timoshenko GN, Rozanov AY, Krasavin E, Mauro ED (2015) Meteorite-catalyzed syntheses of nucleosides and of otherprebiotic compounds from formamide under proton irradiation. PNAS 112:E2746–E2755. https://doi.org/10.1073/pnas.1422225112

    Article  CAS  PubMed  Google Scholar 

  • Saladino R, Neri V, Crestini C (2010) Role of clays in the preobiotic synthesis of sugar derivatives from formamide. Phil Mag 90:2329–2337

    Article  CAS  Google Scholar 

  • Sanchez RA, Ferris JP, Orgel LE (1966a) Conditions for purine synthesis: did prebiotic synthesis occur at low temperature? Science 153:72–73

    Article  CAS  Google Scholar 

  • Sanchez RA, Ferris JP, Orgel LE (1966b) Cyanoacetylene in prebiotic synthesis. Science 154:784–785

    Article  CAS  Google Scholar 

  • Šišak D, McCusker LB, Zandomeneghi G, Meier BH, Bläser D, Boese R, Schweizaer WB, Gilmour R, Dunitz JD (2010) The crystal structure of D-ribose- At last! Angew Chem Int Ed 49:4503–4505

    Article  Google Scholar 

  • Theng BKG (2018) Clay mineral catalysis of organic reactions. CRC Press, Boca Raton (FL)

    Book  Google Scholar 

  • Wang W, Huang F, Sun C, Liu J, Sheng X, Chen D (2017) A theoretical insight into the formation mechanisms of C/N-ribonucleosides with pyrimidine and ribose. Phys Chem Chem Phys 19:10413–10426

    Article  CAS  Google Scholar 

  • Xu J, Tsanakopoulou M, Magnani CJ, Szabla R, Šponer JE, Šponer J, Góra RW, Sutherland JD (2017) A prebiotically plausible synthesis of pyrimidine β-ribonucleosides and their phosphate derivatives involving photoanomerization. Nat Chem 9:303–309. https://doi.org/10.1038/NCHEM.2664

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Hashizume .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hashizume, H., Theng, B.K.G., van der Gaast, S., Fujii, K. (2019). Formation of Nucleosides and Nucleotides in Chemical Evolution. In: Pontarotti, P. (eds) Evolution, Origin of Life, Concepts and Methods. Springer, Cham. https://doi.org/10.1007/978-3-030-30363-1_2

Download citation

Publish with us

Policies and ethics