Evolution, Origin of Life, Concepts and Methods pp 287-315 | Cite as
Xenacoelomorpha, a Key Group to Understand Bilaterian Evolution: Morphological and Molecular Perspectives
- 1 Citations
- 11 Mentions
- 577 Downloads
Abstract
The Xenacoelomorpha is a clade of mostly marine animals placed as the sister group of the remaining Bilateria (Nephrozoa) in most phylogenomic and morphological analyses, although alternative hypotheses placing them within deuterostomes have been proposed. This key phylogenetic position has raised recently a great interest in the study of their constitutive clades, since they can provide us with character states that illuminate different aspects of the origin of bilateral animals. Moreover, the recent availability of genomic and transcriptomic data from different species has been used in inferring the internal relationships among xenacoelomorph clades and the deciphering of molecular mechanisms that contribute to the evolution of metazoan genomes. Having access to molecular data paves the way to the systematic analysis of the genetic control of xenacoelomorph development and, additionally, to a better-informed study of bilaterian innovations. Here we revisit what has been learned over the last decades on the morphology, genomics and phylogenetic relationships of the Xenacoelomorpha.
Notes
Acknowledgements
Funding from The Swedish Research Council (project 2018-05191) is gratefully acknowledged by Ulf Jondelius. The work of Olga Raikova was supported by the Ministry of Education and Science of the Russian Federation (project no. AAAA-A19-119020690076-7) and the RFBR (project numbers 16-04-00593a and 20-04-01006a). We would also like to thank Dr. Pierre Pontarotti (Marseille) for organizing the yearly “Evolutionary Biology Meeting” in Marseille and for inviting us to submit this chapter.
References
- Achatz JG, Martinez P (2012) The nervous system of Isodiametra pulchra (Acoela) with a discussion on the neuroanatomy of the Xenacoelomorpha and its evolutionary implications. Frontiers Zool 9. https://doi.org/10.1186/1742-9994-9-27CrossRefGoogle Scholar
- Achatz JG, Chiodin M, Salvenmoser W, Tyler S, Martinez P (2013) The Acoela: On Their Kind and Kinships, Especially with Nemertodermatids and Xenoturbellids (Bilateria Incertae Sedis). Org Diversity Evol 13(2):267–286. https://doi.org/10.1007/s13127-012-0112-4CrossRefGoogle Scholar
- Andrikou C, Thiel D, Ruiz-Santiesteban JA, Hejnol A. (2019) Active mode of excretion across digestive tissues predates the origin of excretory organs. PLoS Biol 17(7):e3000408. https://doi.org/10.1371/journal.pbio.3000408CrossRefGoogle Scholar
- Arboleda E, Hartenstein V, Martinez P, Reichert H, Sen S, Sprecher SG, Bailly X (2018) An emerging system to study photosymbiosis, brain regeneration, chronobiology, and behavior: the marine acoel symsagittifera roscoffensis. BioEssays 40(10). https://doi.org/10.1002/bies.201800107CrossRefGoogle Scholar
- Arimoto A, Hikosaka-Katayama T, Hikosaka A, Tagawa K, Inoue T, Ueki T, Yoshida M et al (2019) A draft nuclear-genome assembly of the acoel flatworm Praesagittifera naikaiensis. GigaScience 8(4):1–8. https://doi.org/10.1093/gigascience/giz023CrossRefGoogle Scholar
- Arroyo A, López-Escardó D, de Vargas C, Ruiz-Trillo I (2016) Hidden diversity of Acoelomorpha revealed through metabarcoding. Biol Lett 12(9). https://doi.org/10.1098/rsbl.2016.0674CrossRefGoogle Scholar
- Bedini C, Ferrero E, Lanfranchi A (1973) The ultrastructure of ciliary sensory cells in two Turbellaria Acoela. Tissue Cell 5(3):359–372. https://doi.org/10.1016/S0040-8166(73)80030-8CrossRefPubMedGoogle Scholar
- Beklemischev VN (1963) On the relationship of the Turbellaria to the other groups of the animal kingdom. In: Dougherty EC (ed) The lower Metazoa. University California Press, Berkeley, pp 234–244Google Scholar
- Bery A, Martínez P (2011) Acetylcholinesterase activity in the developing and regenerating nervous system of the acoel symsagittifera roscoffensis. Acta Zoologica 92(4):383–392. https://doi.org/10.1111/j.1463-6395.2010.00472.xCrossRefGoogle Scholar
- Bery A, Cardona A, Martinez P, Hartenstein V (2010) Structure of the central nervous system of a juvenile acoel, Symsagittifera roscoffensis. Dev Genes Evol 220(3–4):61–76. https://doi.org/10.1007/s00427-010-0328-2CrossRefPubMedPubMedCentralGoogle Scholar
- Bleidorn C, Podsiadlowski L, Zhong M, Eeckhaut I, Hartmann S, Halanych KM, Tiedemann R (2009) On the phylogenetic position of Myzostomida: can 77 genes get it wrong? BMC Evol Biol 9(1):150CrossRefGoogle Scholar
- Boone M, Bert W, Claeys M, Houthoofd W, Artois T (2011) Spermatogenesis and the structure of the testes in Nemertodermatida. Zoomorphology 130:273–282CrossRefGoogle Scholar
- Børve A, Hejnol A (2014) Development and juvenile anatomy of the nemertodermatid Meara stichopi (Bock) Westblad 1949 (Acoelomorpha). Front Zool 11(January):50. https://doi.org/10.1186/1742-9994-11-50CrossRefPubMedPubMedCentralGoogle Scholar
- Bourlat SJ, Nielsen C, Lockyer AE, Littlewood DT, Telford MJ (2003) Xenoturbella is a deuterostome that eats molluscs. Nature 530:925–928CrossRefGoogle Scholar
- Bourlat SJ, Juliusdottir T, Lowe CJ, Freeman R, Aronowicz J, Kirschner M, Lander ES et al (2006) Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida. Nature 444(November):85–88. https://doi.org/10.1038/nature05241CrossRefGoogle Scholar
- Brauchle M, Bilican A, Eyer C, Bailly X, Martínez P, Ladurner P, Bruggmann R, Sprecher SG (2018) Xenacoelomorpha survey reveals that all 11 animal Homeobox gene classes were present in the first Bilaterians. Genome Biol Evol 10(9):2205–2217. https://doi.org/10.1093/gbe/evy170CrossRefPubMedPubMedCentralGoogle Scholar
- Buckland-Nicks J, Lundin K, Wallberg A (2018) The sperm of Xenacoelomorpha revisited: implications for the evolution of early Bilaterians. Zoomorphology. https://doi.org/10.1007/s00435-018-0425-8CrossRefGoogle Scholar
- Cannon JT, Vellutini B, Smith J, Ronquist F, Jondelius U, Hejnol A (2016) Xenacoelomorpha is the sister group to Nephrozoa. Nature 530(7588):89–93. https://doi.org/10.1038/nature16520CrossRefPubMedGoogle Scholar
- Chang YC, Pai CY, Chen YC, Ting HC, Martinez P, Telford MJ. Yu JK, Su YH (2015) Regulatory circuit rewiring and functional divergence of the duplicate admp genes in dorsoventral axial patterning. https://doi.org/10.1016/j.ydbio.2015.12.015CrossRefGoogle Scholar
- Chiodin M, Achatz JG, Wanninger A, Martinez P (2011) Molecular architecture of muscles in an acoel and its evolutionary implications. J Exp Zool B Mol Dev Evol 316(6):427–439. https://doi.org/10.1002/jez.b.21416CrossRefPubMedPubMedCentralGoogle Scholar
- Chiodin M, Børve A, Berezikov E, Ladurner P, Martinez P, Hejnol A (2013) Mesodermal gene expression in the acoel Isodiametra pulchra indicates a low number of mesodermal cell types and the endomesodermal origin of the gonads. PLoS ONE 8(2):e55499. https://doi.org/10.1371/journal.pone.0055499CrossRefPubMedPubMedCentralGoogle Scholar
- Conway-Morris S, George JD, Gibson R, Pllatt HM (1985) The origins and relationships of lower invertebrates. Clarendon Press, OxfordGoogle Scholar
- Cook CE, Jimenez-Guri E, Akam M, Salo E (2004) The hox gene complement of acoel flatworms, a basal bilaterian clade. Article Evol Dev 6(3):154–163CrossRefGoogle Scholar
- Crezée M (1978) Paratomella rubra Rieger and Ott, an amphiatlantic acoel turbellarian. Cah Biol Mar 19:1–9Google Scholar
- Dittmann IL, Zauchner T, Nevard LM, Telford MJ, Egger B (2018) SALMFamide2 and serotonin immunoreactivity in the nervous system of some acoels (Xenacoelomorpha). J Morphol 279(5):589–597CrossRefGoogle Scholar
- Dorey AE (1965) The organization and replacement of the epidermis in acoelous turbellarians. Q J Microsc Sci 106:147–172PubMedGoogle Scholar
- Dörjes J (1968) Die Acoela (Turbellaria) Der Deutschen Nordseekste Und Ein Neues System Der Ordnung. Z. Zool Syst Evolutionforsch 6:56–452CrossRefGoogle Scholar
- Dörjes J (1972) Faerlea echinocardii Sp. N. Und Diskussion Der Gattungen Avagina Leiper Und Faerlea Westblad (Turbellaria Acoela). Zoolog Scr 1(3):185–189CrossRefGoogle Scholar
- Ehlers U (1984) Phylogenetisches system der plathelminthes. Verh Natwiss Ver Hamburg 27:291–294Google Scholar
- Ehlers U (1985) Das Phylogenetische System Der Plathelminthes. Gustav Fischer, StutgartGoogle Scholar
- Ehlers U (1991) Comparative morphology of statocysts in the Plathelminthes and the Xenoturbellida. Hydrobiologia 227:263–271CrossRefGoogle Scholar
- Ehlers U (1992a) Dermonephridia–modified epidermal cells with a probable excretory function in Paratomella rubra (Acoela, Plathelminthes). Microfauna Mar 7:253–64Google Scholar
- Ehlers U (1992b) On the fine structure of Paratomella rubra Rieger & Ott (Acoela) and the position of the taxon Paratomella Dörjes in a phylogenetic system of the Acoelomorpha (Plathelminthes). Microfauna Mar 7:265–293Google Scholar
- Ehlers U (1992c) Frontal glandular and sensory structures in Nemertoderma (Nemertodermatida) and Paratomella (Acoela): ultrastructure and phylogenetic implications for the monophyly of the Euplathelminthes (Plathelminthes). Zoomorphology 112(4):227–236. https://doi.org/10.1007/BF01632820CrossRefGoogle Scholar
- Falleni A, Raikova O, Gremigni V (1995) Ultrastructural and cytochemical features of the ovary in Paratomella rubra (Platyhelminthes, Acoela). J Submicroscopical Cytol Pathol 27:511–523Google Scholar
- Ferrero E (1973) A fine structural analysis of the statocyst in Turbellaria Acoela. Zoologica Scripta 2(1):5–16. https://doi.org/10.1111/j.1463-6409.1973.tb00793.xCrossRefGoogle Scholar
- Franzen A, Afzelius B (1987) The ciliated epidermis of Xenoturbella bocki (Platyhelminthes, Xenoturbellida) with some phylogenetic considerations. Zoolog Scr 16(1):9–17. https://doi.org/10.1111/j.1463-6409.1987.tb00046.xCrossRefGoogle Scholar
- Gaerber CW, Salvenmoser W, Rieger RM, Gschwentner R (2007) The nervous system of Convolutriloba (Acoela) and its patterning during regeneration after asexual reproduction. Zoomorphology 126(2):73–87. https://doi.org/10.1007/s00435-007-0039-zCrossRefGoogle Scholar
- Gavilán B, Sprecher SG, Hartenstein V, Martinez P (2019) The digestive system of xenacoelomorphs. Cell Tissue Res (in press). https://doi.org/10.1007/s00441-019-03038-2CrossRefGoogle Scholar
- Gavilán B, Perea-Atienza E, Martínez P (2016) Xenacoelomorpha: a case of independent nervous system centralization? Philos Trans R Soc Lond S B Biol Sci 371(1685):20150039. https://doi.org/10.1098/rstb.2015.0039CrossRefGoogle Scholar
- Gehrke AR, Neverett E, Luo Y-J, Brandt A, Ricci L, Hulett RE, Gompers A et al (2019) Acoel genome reveals the regulatory landscape of whole-body regeneration. Science 363 (6432):eaau6173. https://doi.org/10.1126/science.aau6173CrossRefGoogle Scholar
- Graff LV (1905) Turbellaria I. Acoela. In: F Schulze (ed) Das Tierreich, Eine Zusammenstellung Und Kennzeichnung Der Rezenten Tierformen Heft 23, pp 23–34. Königl. Preuss. Akademie der Wissenschaften zu BerlinGoogle Scholar
- Graff LV (1911) Acoela, Rhabdocoela Und Alloeocoela Des Ostens Der Vereinigten Staaten von Amerika. Z Wiss Zool. 99:321–428Google Scholar
- Gröger H, Schmid V (2001) Larval development in Cnidaria: a connection to Bilateria? Genesis 29:110–114CrossRefGoogle Scholar
- Gschwentner R, Ladurner P, Nimeth K, Rieger R (2001) Stem cells in a basal bilaterian. S-phase and mitotic cells in Convolutriloba longifissura (Acoela, Platyhelminthes). Cell Tissue Res 304(3):401–408CrossRefGoogle Scholar
- Haszprunar G (2015) Review of data for a morphological look on Xenacoelomorpha (Bilateria Incertae Sedis). Org Diversity Evol 16(2):363–389. https://doi.org/10.1007/s13127-015-0249-zCrossRefGoogle Scholar
- Hejnol A, Martindale MQ (2008) Acoel development indicates the independent evolution of the bilaterian mouth and anus. Nature 456(7220):382–386. https://doi.org/10.1038/nature07309CrossRefPubMedGoogle Scholar
- Hejnol A, Martindale MQ (2009) Coordinated spatial and temporal expression of Hox genes during embryogenesis in the acoel Convolutriloba Longifissura. BMC Biol 1(7):65CrossRefGoogle Scholar
- Hejnol A, Obst M, Stamatakis A, Ott M, Rouse GW, Edgecombe GD, Martinez P et al (2009) Assessing the root of bilaterian animals with scalable phylogenomic methods. https://doi.org/10.1098/rspb.2009.0896CrossRefGoogle Scholar
- Hendelberg J (1969) On the development of different types of spermatozoa from spermatids with two flagella in the Turbellaria with remarks on the ultrastructure of the flagella. Zoologiska Bidrag Uppsala 38:1–52Google Scholar
- Hendelberg J (1977) Comparative morphology of turbellarian spermatozoa studied by electron microscopy. Acta Zoologica Fennica 154:149–162Google Scholar
- Hendelberg J (1986) The phylogenetic significance of sperm morphology in the Platyhelminthes. In: Advances in the biology of turbellarians and related platyhelminthes, pp 53–58. Springer, DordrechtCrossRefGoogle Scholar
- Hendelberg J, Hedlund K-O (1974) On the morphology of the epidermal ciliary rootlet system of the acoelous turbellarian Childia groenlandica. Zoon 2:13–24Google Scholar
- Hooge MD (2001) Evolution of the body-wall musculature in the Platyhelminthes (Acoelomorpha, Catenulida, Rhabditophora). J Morph 249:171–194CrossRefGoogle Scholar
- Iomini C, Raikova OI, Noury-Sraïri N, Justine J-L (1995) Immunocytochemistry of tubulin in spermatozoa of Platyhelminthes. Adv Spermatozoal Phylogeny Taxonomy 166:97–110Google Scholar
- Israelsson O (1997) Xenoturbella’s Molluscan Relatives…] and Molluscan Embryogenesis. Nature 390:32CrossRefGoogle Scholar
- Jondelius U, Ruiz-Trillo I, Baguñà J, Riutort M (2002) The Nemertodermatida are basal bilaterians and not members of the Platyhelminthes. Zool Scr 31(2):201–215. https://doi.org/10.1046/j.1463-6409.2002.00090.xCrossRefGoogle Scholar
- Jondelius U, Wallberg A, Hooge M, Raikova OI (2011) How the worm got its pharynx: phylogeny, classification and Bayesian assessment of character evolution in Acoela. Syst Biol 60(6):845–871. https://doi.org/10.1093/sysbio/syr073CrossRefPubMedGoogle Scholar
- Kånneby T, Bernvi DC, Jondelius U (2015) Distribution, delimitation and description of species of Archaphanostoma (Acoela). Zool Scr 44(2):218–231. https://doi.org/10.1111/zsc.12092CrossRefGoogle Scholar
- Karling TG (1940) Zur Morphologie Und Systematik Der Alloeocoela Cumulata and Rhabditophora Lecithophora (Turbellaria). Acta Zool Fennica 26:1–160Google Scholar
- Klauser MD, Smith JPS, Tyler S (1986) Ultrastructure of the frontal organ in Convoluta and Macrostomum spp.: significance for models of the turbellarian archetype. Hydrobiologia 132(1):47–52. https://doi.org/10.1007/BF00046227CrossRefGoogle Scholar
- Lanfranchi A (1990) Ultrastructure of the epidermal eyespots of an acoel platyhelminth. Tissue Cell 22 (4):541–46. http://www.ncbi.nlm.nih.gov/pubmed/18620320CrossRefGoogle Scholar
- Lundin K (1997) Comparative ultrastructure of the epidermal ciliary rootlets and associated structures in species of the Nemertodermatida and Acoela (Plathelminthes). Zoomorphology 117 (2):81–92. https://doi.org/10.1007/s004350050033CrossRefGoogle Scholar
- Lundin K (1998) The epidermal ciliary rootlets of Xenoturbella bocki (Xenoturbellida) revisited: new support for a possible kinship with the Acoelomorpha (Platyhelminthes). Zool Scr 27(3):263–270. https://doi.org/10.1111/j.1463-6409.1998.tb00440.xCrossRefGoogle Scholar
- Lundin K, Hendelberg J (1998) Is the sperm type of the Nemertodermatida close to that of the ancestral Platyhelminthes? Hydrobiologia 383:197–205CrossRefGoogle Scholar
- Martín-Durán JM, Pang K, Børve A, Lê HS, Furu A, Cannon JT, Jondelius U, Hejnol A (2018) Convergent evolution of Bilaterian nerve cords. Nature 553(7686):45–50. https://doi.org/10.1038/nature25030CrossRefGoogle Scholar
- Martinez P (2018) The Comparative method in biology and the essentialist trap. Frontiers in ecology and evolution 6 (AUG). https://doi.org/10.3389/fevo.2018.00130
- Martinez P, Hartenstein V, Sprecher SG (2017) Xenacoelomorpha Nervous Systems. In: SM Sherman (ed) Oxford encyclopaedia of neurosciences. Oxford University PressGoogle Scholar
- Meyer-Wachsmuth I, Jondelius U (2016) Interrelationships of Nemertodermatida. Org Div Evol. https://doi.org/10.1007/s13127-015-0240-8CrossRefGoogle Scholar
- Meyer-Wachsmuth I, Raikova OI, Jondelius U (2013) The muscular system of Nemertoderma westbladi and Meara stichopi (Nemertodermatida, Acoelomorpha). Zoomorphology 132(3):239–252. https://doi.org/10.1007/s00435-013-0191-6CrossRefGoogle Scholar
- Meyer-Wachsmuth I, Curini-Galletti M, Jondelius U (2014) Hyper-cryptic marine meiofauna: species complexes in Nemertodermatida. PLoS ONE 9(9):e107688. https://doi.org/10.1371/journal.pone.0107688CrossRefPubMedPubMedCentralGoogle Scholar
- Moreno E, De Mulder K, Salvenmoser W, Ladurner P, Martínez P (2010) Inferring the ancestral function of the posterior hox gene within the Bilateria: controlling the maintenance of reproductive structures, the musculature and the nervous system in the acoel flatworm Isodiametra pulchra. Evol Dev May. https://doi.org/10.1111/j.1525-142x.2010.00411.xCrossRefGoogle Scholar
- Moreno E, Nadal M, Baguñà, J, Martínez P (2009) Tracking the origins of the Bilaterian hox patterning system: insights from the acoel flatworm Symsagittifera roscoffensis. Evol Dev 11 (5). https://doi.org/10.1111/j.1525-142X.2009.00363.xCrossRefGoogle Scholar
- Mulder K De, Kuales G, Pfister D, Willems M, Egger B, Salvenmoser W, Thaler M et al (2009) Characterization of the stem cell system of the acoel Isodiametra pulchra. BMC Dev Biol 9:69. https://doi.org/10.1186/1471-213X-9-69CrossRefPubMedPubMedCentralGoogle Scholar
- Mwinyi A, Bailly X, Bourlat SJ, Jondelius U, Littlewood TJ, Podsiadlowski L (2010) The phylogenetic position of Acoela as revealed by the complete mitochondrial genome of Symsagittifera roscoffensis. BMC Evol Biol 10:309. https://doi.org/10.1186/1471-2148-10-309CrossRefPubMedPubMedCentralGoogle Scholar
- Nakano H, Miyazawa H, Maeno A, Shiroishi T, Kakui K, Koyanagi R, Kanda M, Satoh N, Omori A, Kohtsuka H (2017) A new species of Xenoturbella from the western Pacific Ocean and the evolution of Xenoturbella. BMC Evol Biol 17(1):245CrossRefGoogle Scholar
- Noren M, Jondelius U (1997) Xenoturbella’s molluscan relatives. Nature 390:31–32. https://doi.org/10.1038/36242CrossRefGoogle Scholar
- Obst M, Nakano H, Bourlat SJ, Thorndyke MC, Telford MJ, Nyengaard JR, Funch P (2011) Spermatozoon ultrastructure of Xenoturbella bocki (Westblad 1949). Acta Zool 92(2):109–115. https://doi.org/10.1111/j.1463-6395.2010.00496.xCrossRefGoogle Scholar
- Paps J, Holland PWH (2018) Reconstruction of the ancestral metazoan genome reveals an increase in genomic novelty. Nat Commun 9(1):1730. https://doi.org/10.1038/s41467-018-04136-5CrossRefPubMedPubMedCentralGoogle Scholar
- Perea-Atienza E, Gavilán B, Chiodin M, Abril J-F, Hoff KJ, Poustka AJ, Martinez P (2015) The nervous system of Xenacoelomorpha: a genomic perspective. J Exp Biol 218(Pt 4):618–628. https://doi.org/10.1242/jeb.110379CrossRefPubMedGoogle Scholar
- Perea-Atienza E, Sprecher SG, Martínez P (2018) Characterization of the bHLH family of transcriptional regulators in the acoel S. roscoffensis and their putative role in neurogenesis. Evodevo 9:8Google Scholar
- Petrov AA, Hooge M, Tyler S (2004) Ultrastructure of sperms in Acoela (Acoelomorpha) and its concordance with molecular systematics. Invertebr Biol 123:183–197CrossRefGoogle Scholar
- Philippe H, Brinkmann H, Copley RR, Moroz LL, Nakano H, Poustka AJ, Wallberg A, Peterson KJ, Telford MJ (2011) Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 470(7333):255–258. https://doi.org/10.1038/nature09676CrossRefPubMedPubMedCentralGoogle Scholar
- Philippe H, PoustkaAJ, Chiodin M, Hoff KJ, Dessimoz C, Tomiczek B, Schiffer PH, Müller S, Domman D, Horn M, Kuhl H, Timmermann B, Satoh N, Hikosaka-Katayama T, Nakano H, Rowe ML, Elphick MR, Thomas-Chollier M, Ha MJ (2019) Mitigating anticipated effects of systematic errors supports sister-group relationship between Xenacoelomorpha and Ambulacraria. Curr Biol (in press)Google Scholar
- Popova NV, Mamkaev YV (1985) Ultrastructure and primitive features of the eyes of Convoluta convoluta (Turbellaria Acoela). Dokl Akad Nauk SSSR 283:756–759Google Scholar
- Raikova OI (1991) On phylogenetic significance of ultrastructural characters in Turbellaria. In: Proceedings of the Zoological Institute of the Academy of Sciences of the USSR, pp 26–52Google Scholar
- Raikova OI (2004) Neuroanatomy of basal bilaterians (Xenoturbellida, Nemertodermatida, Acoela) and its phylogenetic implications (Ph.D. Thesis). Åbo Akademi University. Åbo, FinlandGoogle Scholar
- Raikova OI, Justine J-L (1999) Microtubular system during spermiogenesis and in the spermatozoon of Convoluta saliens (Platyhelminthes, Acoela): tubulin immunocytochemistry and electron microscopy. Mol Reprod Dev 52:74–85CrossRefGoogle Scholar
- Raikova OI, Falleni A, Gremigni V (1995) Oogenesis in Actinoposthia beklemischevi (Platyhelminthes, Acoela): an ultrastructural and cytochemical study. Tissue Cell 27:621–633CrossRefGoogle Scholar
- Raikova OI, Reuter M, Kotikova EA, Gustafsson MKS (1998) A commissural brain! The pattern of 5-HT immunoreactivity in Acoela (Plathelminthes). Zoomorphology 118(2):69–77. https://doi.org/10.1007/s004350050058CrossRefGoogle Scholar
- Raikova OI, Reuter M, Jondelius U, Gustafsson MKS (2000a) An immunocytochemical and ultrastructural study of the nervous and muscular systems of Xenoturbella westbladi (Bilateria Inc. Sed.). Zoomorphology 120(2):107–18. https://doi.org/10.1007/s004350000028CrossRefGoogle Scholar
- Raikova OI, Reuter M, Jondelius U, Gustafsson MKS (2000b) The brain of the Nemertodermatida (Platyhelminthes) as revealed by anti-5HT and anti-FMRFamide immunostainings. Tissue Cell 32(5):358–365. https://doi.org/10.1054/tice.2000.0121CrossRefPubMedGoogle Scholar
- Raikova OI, Reuter M, Gustafsson MKS, Maule AG, Halton DW, Jondelius U (2004a) Basiepidermal nervous system in Nemertoderma westbladi (Nemertodermatida): GYIRFamide immunoreactivity. Zoology 107(1):75–86. https://doi.org/10.1016/j.zool.2003.12.002CrossRefPubMedGoogle Scholar
- Raikova OI, Reuter M, Gustafsson MKS, Maule AG, Halton DW, Jondelius U (2004b) Evolution of the nervous system in Paraphanostoma (Acoela). Zool Scr 33:71–88CrossRefGoogle Scholar
- Raikova OI, Meyer-Wachsmuth I, Jondelius U (2016) The plastic nervous system of Nemertodermatida. Org Div Evol 16(1):85–104. https://doi.org/10.1007/s13127-015-0248-0CrossRefGoogle Scholar
- Ramachandra NB, Gates RD, Ladurner P, Jacobs DK, Hartenstein V (2002) Embryonic development in the primitive bilaterian Neochildia fusca: normal morphogenesis and isolation of POU genes Brn-1 and Brn-3. Dev Genes Evol 212(2):55–69. https://doi.org/10.1007/s00427-001-0207-yCrossRefPubMedGoogle Scholar
- Reisinger E (1925) Untersuchungen Am Nervensystem Der Bothrioplana semperi Braun. (Zugleich Ein Beitrag Zur Technik Der Vitalen Nervenfaerbung Und Zur Vergleichenden Anatomie Des Plathelminthennervensystem). Z Morphol Okol Tiere 5:119–149CrossRefGoogle Scholar
- Reisinger E (1960) Was ist Xenoturbella. Z Wiss Zool 164:188–198Google Scholar
- Reuter M, Raikova OI, Jondelius U, Gustafsson MKS, Maule AG, Halton, DV (2001) Organisation of the nervous system in the Acoela: an immunocytochemical study. Tissue Cell 33(2):119–28. http://www.ncbi.nlm.nih.gov/pubmed/11392663
- Reuter M, Raikova OI, Gustafsson MKS (2001) Patterns in the nervous and muscle systems in lower flatworms. Belgian J Zool 131 (Suppl:47–53Google Scholar
- Richter S, Loesel R, Purschke G, Schmidt-Rhaesa A, Scholtz G, Stach T, Vogt L, Wanninger A, Brenneis G, Döring C, Faller S, Fritsch M, Grobe P, Heuer CM, Kaul S, Møller OS, Müller CH, Rieger V, Rothe BH, Stegner ME, Harzsch S (2010) Invertebrate neurophylogeny: suggested terms and definitions for a neuroanatomical glossary. Front Zool. 7:29. https://doi.org/10.1186/1742-9994-7-29CrossRefGoogle Scholar
- Rieger RM, Tyler S, Smith JPS III, Rieger GE (1991) Platyhelminthes: Turbellaria. In: Bogitsh BJ, Harrison FW (eds) Microscopic anatomy of invertebrates. Wiley-Liss, New YorkGoogle Scholar
- Robertson HE, Lapraz F, Egger B, Telford MJ, Schiffer PH (2017) The mitochondrial genomes of the acoelomorph worms Paratomella rubra, Isodiametra pulchra and Archaphanostoma ylvae. Sci R 7(1):1–16. https://doi.org/10.1038/s41598-017-01608-4CrossRefGoogle Scholar
- Rohde K, Watson NA, Cannon LRG (1988) Ultrastructure of epidermal cilia of Pseudactinoposthia sp. (Platyhelminthes, Acoela); implications for the phylogenetic status of the Xenoturbellida and Acoelomorpha. J Submicroscopical Cytol Pathol 20:759–767Google Scholar
- Rouse GW, Wilson NG, Carvajal JI, Vrijenhoek RC (2016) New deep-sea species of Xenoturbella and the position of Xenacoelomorpha. Nature. https://doi.org/10.1038/nature16545CrossRefPubMedGoogle Scholar
- Ruiz-Trillo I, Riutort M, Littlewood DT, Herniou EA, Baguña J (1999) Acoel flatworms: earliest extant bilaterian metazoans, not members of Platyhelminthes. Science 283 (5409):1919–23. http://www.ncbi.nlm.nih.gov/pubmed/10082465CrossRefGoogle Scholar
- Ruiz-Trillo I, Paps J, Loukota M, Ribera C, Jondelius U, Baguñà J, Riutort M (2002) A phylogenetic analysis of myosin heavy chain type II sequences corroborates that Acoela and Nemertodermatida are basal bilaterians. Proc Natl Acad Sci 99(17):11246–11251. https://doi.org/10.1073/pnas.172390199CrossRefPubMedGoogle Scholar
- Ruiz-Trillo I, Riutort M, Fourcade HM, Baguñà J, Boore JL (2004) Mitochondrial genome data support the basal position of Acoelomorpha and the polyphyly of the Platyhelminthes. Mol Phylogenet Evol 33(2):321–332. https://doi.org/10.1016/j.ympev.2004.06.002CrossRefPubMedGoogle Scholar
- Schmidt-Rhaesa, A. (2007). The evolution of organ systems. Oxford University PressGoogle Scholar
- Semmler H, Chiodin M, Bailly X, Martinez P, Wanninger A (2010) Steps towards a centralized nervous system in basal bilaterians: insights from neurogenesis of the acoel Symsagittifera roscoffensis. Dev Growth Differ 52(8):701–713. https://doi.org/10.1111/j.1440-169X.2010.01207.xCrossRefPubMedGoogle Scholar
- Seo HC, Edvardsen RB, Maeland AD, Bjordal M, Jensen MF, Hansen A, Flaat M, Weissenbach J, Lehrach H, Wincker P, Reinhardt R, Chourrout D (2004) Hox cluster disintegration with persistent anteroposterior order of expression in Oikopleura dioica. Nature 431(7004):67–71CrossRefGoogle Scholar
- Sikes JM, Bely AE (2010) Making heads from tails: development of a reversed anterior–posterior axis during budding in an acoel. Dev Biol 338(1):86–97. https://doi.org/10.1016/j.ydbio.2009.10.033CrossRefPubMedGoogle Scholar
- Smith III JPS, Tyler S (1988) Frontal organs in the Nemertodermatida (Turbellaria). Am Zool 28(4):140A, #747Google Scholar
- Smith III JPS, Tyler S, Rieger RM (1986) Is the Turbellaria Polyphyletic? Hydrobiologia 132:13–21CrossRefGoogle Scholar
- Smith JPS, Tyler S (1985) Fine-structure and evolutionary implications of the frontal organ in Turbellaria Acoela. 1 Diopisthoporus gymnopharyngeus sp.n. Zool Scr 14(2):91–102. https://doi.org/10.1111/j.1463-6409.1985.tb00180.xCrossRefGoogle Scholar
- Smith JPS, Tyler S (1985) The acoel turbellarians: kingpins of metazoan evolution or a specialized offshoot?” In: Morris SC, George JD, Gibson R, Platt HM (eds) The origins and relationships of lower invertebrates, 123142. Oxford: Clarendon PressGoogle Scholar
- Sopott-Ehlers B, Ehlers U (1997) Ultrastructure of the subepidermal musculature of Xenoturbella bocki, the adelphotaxon of the Bilateria. Zoomorphology 117:71–79. https://doi.org/10.1007/s004350050032CrossRefGoogle Scholar
- Sprecher SG, Bernardo-Garcia F-J, van Giesen L, Hartenstein V, Reichert H, Neves R, Bailly X et al. (2015) Functional brain regeneration in the acoel worm Symsagittifera roscoffensis. Biology Open 4 (12):1688–95. https://doi.org/10.1242/bio.014266CrossRefGoogle Scholar
- Srivastava M, Mazza-Curll KL, van Wolfswinkel JC, Reddien PW (2014) Whole-body acoel regeneration is controlled by wnt and bmp-admp signaling. Curr Biol CB 24(10):1107–1113. https://doi.org/10.1016/j.cub.2014.03.042CrossRefPubMedGoogle Scholar
- Sterrer W (1998) New and known Nemertodermatida (Platyhelminthes-Acoelomorpha): a revision. Belgian J Zool 128(1):55–92. https://www.researchgate.net/publication/265923621_New_and_known_Nemertodermatida_Platyhelminthes-Acoelomorpha_A_revision
- Tekle YI, Raikova OI, Justine J-L, Jondelius U (2007a) Ultrastructure and tubulin immunocytochemistry of the copulatory stylet-like structure in Childia species (Acoela). J Morphol 268:166–180CrossRefGoogle Scholar
- Tekle YI, Raikova OI, Justine J-L, Hendelberg J, Jondelius U (2007b) Ultrastructural and immunocytochemical investigation of acoel sperms with 9+ 1 axoneme structure: new sperm characters for unraveling phylogeny in Acoela. Zoomorphology 126:1–16CrossRefGoogle Scholar
- Telford MJ, Lockyer AE, Cartwright-Finch C, Littlewood TJ (2003) Combined large and small subunit ribosomal RNA phylogenies support a basal position of the acoelomorph flatworms. Proc Biol Sci 270 (1519):1077–83. https://doi.org/10.1098/rspb.2003.2342CrossRefGoogle Scholar
- Thiel D, Franz-Wachtel M, Aguilera F, Hejnol A (2018) Xenacoelomorph neuropeptidomes reveal a major expansion of neuropeptide systems during early bilaterian evolution. Mol Biol Evol 35(10):2528–2543. https://doi.org/10.1093/molbev/msy160CrossRefPubMedCentralGoogle Scholar
- Todt C (2009) Structure and evolution of the pharynx simplex in acoel flatworms (Acoela). J Morphol 270(3):271–290. https://doi.org/10.1002/jmor.10682CrossRefPubMedGoogle Scholar
- Todt C, Tyler S (2006) Ciliary receptors associated with the mouth and pharynx of Acoela (Acoelomorpha): a comparative ultrastructural study. Acta Zoologica 88(1):41–58. https://doi.org/10.1111/j.1463-6395.2007.00246.xCrossRefGoogle Scholar
- Tyler S (1979) Distinctive features of cilia in metazoans and their significance for systematics. Tissue Cell 11:385–400CrossRefGoogle Scholar
- Tyler S, Hooge MD (2004) Comparative morphology of the body wall in flatworms (Platyhelminthes). Can J Zool 82:194–210CrossRefGoogle Scholar
- Tyler S, Rieger RM (1975) Uniflagellate spermatozoa in Nemertoderma (Turbellaria) and their phylogenetic significance. Science 188:730–732CrossRefGoogle Scholar
- Tyler S, Rieger RM (1977) Ultrastructural evidence for the systematic position of the Nemertodermatida (Turbellaria). Acta Zool Fennica 54:193–207Google Scholar
- Uljanin WN (1870) Die Turbellarien Der Bucht von Sebastopol. Arbeiten Der 2.Versammlung Russischer Naturforscher Zu Moskau. 1869:1–96Google Scholar
- Westblad E (1937) Die Turbellarien-Gattung Nemertoderma Steinböck. Acta Societatis pro Fauna et Flora Fennica 60:45–89Google Scholar
- Westblad E (1940) Studien Über Skandinavische Turbellaria Acoela. I. Arkiv För Zoologi 32A(20):1–28Google Scholar
- Westblad E (1942) Studien Über Skandinavische Turbellaria Acoela. II. Arkiv För Zoologi 33A(14):1–48Google Scholar
- Westblad E (1945) Studien Über Skandinavische Turbellaria Acoela. III. Ark Zool. 36A(5):1–56Google Scholar
- Westblad E (1946) Studien Über Skandinavische Turbellaria Acoela. IV. Ark Zool 38A(1):1–56Google Scholar
- Westblad E (1948) Studien Über Skandinavische Turbellaria Acoela. V. Ark Zool 41:191–273Google Scholar
- Westblad E (1949a) On Meara stichopi (Bock) Westblad, a new representative of Turbellaria archoophora. Ark Zool Ser 2 1(5):43–57Google Scholar
- Westblad E (1949b) Xenoturbella bocki N.g., N. Sp., a peculiar, primitive Turbellarian type. Ark. Zool 1:3–29Google Scholar
- Yamasu T (1991) Fine structure and function of ocelli and sagittocysts of acoel flatworms. Hydrobiologia 227(1):273–282. https://doi.org/10.1007/BF00027612CrossRefGoogle Scholar
- Zabotin YI (2019) Ultrastructure of epidermal sensillae in three species of Acoela. Invertebr Zool 6(1):71–77CrossRefGoogle Scholar