Skip to main content

Xenacoelomorpha, a Key Group to Understand Bilaterian Evolution: Morphological and Molecular Perspectives

  • Chapter
  • First Online:
Evolution, Origin of Life, Concepts and Methods

Abstract

The Xenacoelomorpha is a clade of mostly marine animals placed as the sister group of the remaining Bilateria (Nephrozoa) in most phylogenomic and morphological analyses, although alternative hypotheses placing them within deuterostomes have been proposed. This key phylogenetic position has raised recently a great interest in the study of their constitutive clades, since they can provide us with character states that illuminate different aspects of the origin of bilateral animals. Moreover, the recent availability of genomic and transcriptomic data from different species has been used in inferring the internal relationships among xenacoelomorph clades and the deciphering of molecular mechanisms that contribute to the evolution of metazoan genomes. Having access to molecular data paves the way to the systematic analysis of the genetic control of xenacoelomorph development and, additionally, to a better-informed study of bilaterian innovations. Here we revisit what has been learned over the last decades on the morphology, genomics and phylogenetic relationships of the Xenacoelomorpha.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achatz JG, Martinez P (2012) The nervous system of Isodiametra pulchra (Acoela) with a discussion on the neuroanatomy of the Xenacoelomorpha and its evolutionary implications. Frontiers Zool 9. https://doi.org/10.1186/1742-9994-9-27

    Article  Google Scholar 

  • Achatz JG, Chiodin M, Salvenmoser W, Tyler S, Martinez P (2013) The Acoela: On Their Kind and Kinships, Especially with Nemertodermatids and Xenoturbellids (Bilateria Incertae Sedis). Org Diversity Evol 13(2):267–286. https://doi.org/10.1007/s13127-012-0112-4

    Article  Google Scholar 

  • Andrikou C, Thiel D, Ruiz-Santiesteban JA, Hejnol A. (2019) Active mode of excretion across digestive tissues predates the origin of excretory organs. PLoS Biol 17(7):e3000408. https://doi.org/10.1371/journal.pbio.3000408

    Article  CAS  Google Scholar 

  • Arboleda E, Hartenstein V, Martinez P, Reichert H, Sen S, Sprecher SG, Bailly X (2018) An emerging system to study photosymbiosis, brain regeneration, chronobiology, and behavior: the marine acoel symsagittifera roscoffensis. BioEssays 40(10). https://doi.org/10.1002/bies.201800107

    Article  Google Scholar 

  • Arimoto A, Hikosaka-Katayama T, Hikosaka A, Tagawa K, Inoue T, Ueki T, Yoshida M et al (2019) A draft nuclear-genome assembly of the acoel flatworm Praesagittifera naikaiensis. GigaScience 8(4):1–8. https://doi.org/10.1093/gigascience/giz023

    Article  CAS  Google Scholar 

  • Arroyo A, López-Escardó D, de Vargas C, Ruiz-Trillo I (2016) Hidden diversity of Acoelomorpha revealed through metabarcoding. Biol Lett 12(9). https://doi.org/10.1098/rsbl.2016.0674

    Article  Google Scholar 

  • Bedini C, Ferrero E, Lanfranchi A (1973) The ultrastructure of ciliary sensory cells in two Turbellaria Acoela. Tissue Cell 5(3):359–372. https://doi.org/10.1016/S0040-8166(73)80030-8

    Article  CAS  PubMed  Google Scholar 

  • Beklemischev VN (1963) On the relationship of the Turbellaria to the other groups of the animal kingdom. In: Dougherty EC (ed) The lower Metazoa. University California Press, Berkeley, pp 234–244

    Google Scholar 

  • Bery A, Martínez P (2011) Acetylcholinesterase activity in the developing and regenerating nervous system of the acoel symsagittifera roscoffensis. Acta Zoologica 92(4):383–392. https://doi.org/10.1111/j.1463-6395.2010.00472.x

    Article  Google Scholar 

  • Bery A, Cardona A, Martinez P, Hartenstein V (2010) Structure of the central nervous system of a juvenile acoel, Symsagittifera roscoffensis. Dev Genes Evol 220(3–4):61–76. https://doi.org/10.1007/s00427-010-0328-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Bleidorn C, Podsiadlowski L, Zhong M, Eeckhaut I, Hartmann S, Halanych KM, Tiedemann R (2009) On the phylogenetic position of Myzostomida: can 77 genes get it wrong? BMC Evol Biol 9(1):150

    Article  Google Scholar 

  • Boone M, Bert W, Claeys M, Houthoofd W, Artois T (2011) Spermatogenesis and the structure of the testes in Nemertodermatida. Zoomorphology 130:273–282

    Article  Google Scholar 

  • Børve A, Hejnol A (2014) Development and juvenile anatomy of the nemertodermatid Meara stichopi (Bock) Westblad 1949 (Acoelomorpha). Front Zool 11(January):50. https://doi.org/10.1186/1742-9994-11-50

    Article  PubMed  PubMed Central  Google Scholar 

  • Bourlat SJ, Nielsen C, Lockyer AE, Littlewood DT, Telford MJ (2003) Xenoturbella is a deuterostome that eats molluscs. Nature 530:925–928

    Article  Google Scholar 

  • Bourlat SJ, Juliusdottir T, Lowe CJ, Freeman R, Aronowicz J, Kirschner M, Lander ES et al (2006) Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida. Nature 444(November):85–88. https://doi.org/10.1038/nature05241

    Article  CAS  Google Scholar 

  • Brauchle M, Bilican A, Eyer C, Bailly X, Martínez P, Ladurner P, Bruggmann R, Sprecher SG (2018) Xenacoelomorpha survey reveals that all 11 animal Homeobox gene classes were present in the first Bilaterians. Genome Biol Evol 10(9):2205–2217. https://doi.org/10.1093/gbe/evy170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buckland-Nicks J, Lundin K, Wallberg A (2018) The sperm of Xenacoelomorpha revisited: implications for the evolution of early Bilaterians. Zoomorphology. https://doi.org/10.1007/s00435-018-0425-8

    Article  Google Scholar 

  • Cannon JT, Vellutini B, Smith J, Ronquist F, Jondelius U, Hejnol A (2016) Xenacoelomorpha is the sister group to Nephrozoa. Nature 530(7588):89–93. https://doi.org/10.1038/nature16520

    Article  CAS  PubMed  Google Scholar 

  • Chang YC, Pai CY, Chen YC, Ting HC, Martinez P, Telford MJ. Yu JK, Su YH (2015) Regulatory circuit rewiring and functional divergence of the duplicate admp genes in dorsoventral axial patterning. https://doi.org/10.1016/j.ydbio.2015.12.015

    Article  CAS  Google Scholar 

  • Chiodin M, Achatz JG, Wanninger A, Martinez P (2011) Molecular architecture of muscles in an acoel and its evolutionary implications. J Exp Zool B Mol Dev Evol 316(6):427–439. https://doi.org/10.1002/jez.b.21416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiodin M, Børve A, Berezikov E, Ladurner P, Martinez P, Hejnol A (2013) Mesodermal gene expression in the acoel Isodiametra pulchra indicates a low number of mesodermal cell types and the endomesodermal origin of the gonads. PLoS ONE 8(2):e55499. https://doi.org/10.1371/journal.pone.0055499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conway-Morris S, George JD, Gibson R, Pllatt HM (1985) The origins and relationships of lower invertebrates. Clarendon Press, Oxford

    Google Scholar 

  • Cook CE, Jimenez-Guri E, Akam M, Salo E (2004) The hox gene complement of acoel flatworms, a basal bilaterian clade. Article Evol Dev 6(3):154–163

    Article  CAS  Google Scholar 

  • Crezée M (1978) Paratomella rubra Rieger and Ott, an amphiatlantic acoel turbellarian. Cah Biol Mar 19:1–9

    Google Scholar 

  • Dittmann IL, Zauchner T, Nevard LM, Telford MJ, Egger B (2018) SALMFamide2 and serotonin immunoreactivity in the nervous system of some acoels (Xenacoelomorpha). J Morphol 279(5):589–597

    Article  CAS  Google Scholar 

  • Dorey AE (1965) The organization and replacement of the epidermis in acoelous turbellarians. Q J Microsc Sci 106:147–172

    CAS  PubMed  Google Scholar 

  • Dörjes J (1968) Die Acoela (Turbellaria) Der Deutschen Nordseekste Und Ein Neues System Der Ordnung. Z. Zool Syst Evolutionforsch 6:56–452

    Article  Google Scholar 

  • Dörjes J (1972) Faerlea echinocardii Sp. N. Und Diskussion Der Gattungen Avagina Leiper Und Faerlea Westblad (Turbellaria Acoela). Zoolog Scr 1(3):185–189

    Article  Google Scholar 

  • Ehlers U (1984) Phylogenetisches system der plathelminthes. Verh Natwiss Ver Hamburg 27:291–294

    Google Scholar 

  • Ehlers U (1985) Das Phylogenetische System Der Plathelminthes. Gustav Fischer, Stutgart

    Google Scholar 

  • Ehlers U (1991) Comparative morphology of statocysts in the Plathelminthes and the Xenoturbellida. Hydrobiologia 227:263–271

    Article  Google Scholar 

  • Ehlers U (1992a) Dermonephridia–modified epidermal cells with a probable excretory function in Paratomella rubra (Acoela, Plathelminthes). Microfauna Mar 7:253–64

    Google Scholar 

  • Ehlers U (1992b) On the fine structure of Paratomella rubra Rieger & Ott (Acoela) and the position of the taxon Paratomella Dörjes in a phylogenetic system of the Acoelomorpha (Plathelminthes). Microfauna Mar 7:265–293

    Google Scholar 

  • Ehlers U (1992c) Frontal glandular and sensory structures in Nemertoderma (Nemertodermatida) and Paratomella (Acoela): ultrastructure and phylogenetic implications for the monophyly of the Euplathelminthes (Plathelminthes). Zoomorphology 112(4):227–236. https://doi.org/10.1007/BF01632820

    Article  Google Scholar 

  • Falleni A, Raikova O, Gremigni V (1995) Ultrastructural and cytochemical features of the ovary in Paratomella rubra (Platyhelminthes, Acoela). J Submicroscopical Cytol Pathol 27:511–523

    Google Scholar 

  • Ferrero E (1973) A fine structural analysis of the statocyst in Turbellaria Acoela. Zoologica Scripta 2(1):5–16. https://doi.org/10.1111/j.1463-6409.1973.tb00793.x

    Article  Google Scholar 

  • Franzen A, Afzelius B (1987) The ciliated epidermis of Xenoturbella bocki (Platyhelminthes, Xenoturbellida) with some phylogenetic considerations. Zoolog Scr 16(1):9–17. https://doi.org/10.1111/j.1463-6409.1987.tb00046.x

    Article  Google Scholar 

  • Gaerber CW, Salvenmoser W, Rieger RM, Gschwentner R (2007) The nervous system of Convolutriloba (Acoela) and its patterning during regeneration after asexual reproduction. Zoomorphology 126(2):73–87. https://doi.org/10.1007/s00435-007-0039-z

    Article  Google Scholar 

  • Gavilán B, Sprecher SG, Hartenstein V, Martinez P (2019) The digestive system of xenacoelomorphs. Cell Tissue Res (in press). https://doi.org/10.1007/s00441-019-03038-2

    Article  Google Scholar 

  • Gavilán B, Perea-Atienza E, Martínez P (2016) Xenacoelomorpha: a case of independent nervous system centralization? Philos Trans R Soc Lond S B Biol Sci 371(1685):20150039. https://doi.org/10.1098/rstb.2015.0039

    Article  CAS  Google Scholar 

  • Gehrke AR, Neverett E, Luo Y-J, Brandt A, Ricci L, Hulett RE, Gompers A et al (2019) Acoel genome reveals the regulatory landscape of whole-body regeneration. Science 363 (6432):eaau6173. https://doi.org/10.1126/science.aau6173

    Article  Google Scholar 

  • Graff LV (1905) Turbellaria I. Acoela. In: F Schulze (ed) Das Tierreich, Eine Zusammenstellung Und Kennzeichnung Der Rezenten Tierformen Heft 23, pp 23–34. Königl. Preuss. Akademie der Wissenschaften zu Berlin

    Google Scholar 

  • Graff LV (1911) Acoela, Rhabdocoela Und Alloeocoela Des Ostens Der Vereinigten Staaten von Amerika. Z Wiss Zool. 99:321–428

    Google Scholar 

  • Gröger H, Schmid V (2001) Larval development in Cnidaria: a connection to Bilateria? Genesis 29:110–114

    Article  Google Scholar 

  • Gschwentner R, Ladurner P, Nimeth K, Rieger R (2001) Stem cells in a basal bilaterian. S-phase and mitotic cells in Convolutriloba longifissura (Acoela, Platyhelminthes). Cell Tissue Res 304(3):401–408

    Article  CAS  Google Scholar 

  • Haszprunar G (2015) Review of data for a morphological look on Xenacoelomorpha (Bilateria Incertae Sedis). Org Diversity Evol 16(2):363–389. https://doi.org/10.1007/s13127-015-0249-z

    Article  Google Scholar 

  • Hejnol A, Martindale MQ (2008) Acoel development indicates the independent evolution of the bilaterian mouth and anus. Nature 456(7220):382–386. https://doi.org/10.1038/nature07309

    Article  CAS  PubMed  Google Scholar 

  • Hejnol A, Martindale MQ (2009) Coordinated spatial and temporal expression of Hox genes during embryogenesis in the acoel Convolutriloba Longifissura. BMC Biol 1(7):65

    Article  Google Scholar 

  • Hejnol A, Obst M, Stamatakis A, Ott M, Rouse GW, Edgecombe GD, Martinez P et al (2009) Assessing the root of bilaterian animals with scalable phylogenomic methods. https://doi.org/10.1098/rspb.2009.0896

    Article  Google Scholar 

  • Hendelberg J (1969) On the development of different types of spermatozoa from spermatids with two flagella in the Turbellaria with remarks on the ultrastructure of the flagella. Zoologiska Bidrag Uppsala 38:1–52

    Google Scholar 

  • Hendelberg J (1977) Comparative morphology of turbellarian spermatozoa studied by electron microscopy. Acta Zoologica Fennica 154:149–162

    Google Scholar 

  • Hendelberg J (1986) The phylogenetic significance of sperm morphology in the Platyhelminthes. In: Advances in the biology of turbellarians and related platyhelminthes, pp 53–58. Springer, Dordrecht

    Chapter  Google Scholar 

  • Hendelberg J, Hedlund K-O (1974) On the morphology of the epidermal ciliary rootlet system of the acoelous turbellarian Childia groenlandica. Zoon 2:13–24

    Google Scholar 

  • Hooge MD (2001) Evolution of the body-wall musculature in the Platyhelminthes (Acoelomorpha, Catenulida, Rhabditophora). J Morph 249:171–194

    Article  CAS  Google Scholar 

  • Iomini C, Raikova OI, Noury-Sraïri N, Justine J-L (1995) Immunocytochemistry of tubulin in spermatozoa of Platyhelminthes. Adv Spermatozoal Phylogeny Taxonomy 166:97–110

    Google Scholar 

  • Israelsson O (1997) Xenoturbella’s Molluscan Relatives…] and Molluscan Embryogenesis. Nature 390:32

    Article  CAS  Google Scholar 

  • Jondelius U, Ruiz-Trillo I, Baguñà J, Riutort M (2002) The Nemertodermatida are basal bilaterians and not members of the Platyhelminthes. Zool Scr 31(2):201–215. https://doi.org/10.1046/j.1463-6409.2002.00090.x

    Article  Google Scholar 

  • Jondelius U, Wallberg A, Hooge M, Raikova OI (2011) How the worm got its pharynx: phylogeny, classification and Bayesian assessment of character evolution in Acoela. Syst Biol 60(6):845–871. https://doi.org/10.1093/sysbio/syr073

    Article  PubMed  Google Scholar 

  • Kånneby T, Bernvi DC, Jondelius U (2015) Distribution, delimitation and description of species of Archaphanostoma (Acoela). Zool Scr 44(2):218–231. https://doi.org/10.1111/zsc.12092

    Article  Google Scholar 

  • Karling TG (1940) Zur Morphologie Und Systematik Der Alloeocoela Cumulata and Rhabditophora Lecithophora (Turbellaria). Acta Zool Fennica 26:1–160

    Google Scholar 

  • Klauser MD, Smith JPS, Tyler S (1986) Ultrastructure of the frontal organ in Convoluta and Macrostomum spp.: significance for models of the turbellarian archetype. Hydrobiologia 132(1):47–52. https://doi.org/10.1007/BF00046227

    Article  Google Scholar 

  • Lanfranchi A (1990) Ultrastructure of the epidermal eyespots of an acoel platyhelminth. Tissue Cell 22 (4):541–46. http://www.ncbi.nlm.nih.gov/pubmed/18620320

    Article  CAS  Google Scholar 

  • Lundin K (1997) Comparative ultrastructure of the epidermal ciliary rootlets and associated structures in species of the Nemertodermatida and Acoela (Plathelminthes). Zoomorphology 117 (2):81–92. https://doi.org/10.1007/s004350050033

    Article  Google Scholar 

  • Lundin K (1998) The epidermal ciliary rootlets of Xenoturbella bocki (Xenoturbellida) revisited: new support for a possible kinship with the Acoelomorpha (Platyhelminthes). Zool Scr 27(3):263–270. https://doi.org/10.1111/j.1463-6409.1998.tb00440.x

    Article  Google Scholar 

  • Lundin K, Hendelberg J (1998) Is the sperm type of the Nemertodermatida close to that of the ancestral Platyhelminthes? Hydrobiologia 383:197–205

    Article  Google Scholar 

  • Martín-Durán JM, Pang K, Børve A, Lê HS, Furu A, Cannon JT, Jondelius U, Hejnol A (2018) Convergent evolution of Bilaterian nerve cords. Nature 553(7686):45–50. https://doi.org/10.1038/nature25030

    Article  Google Scholar 

  • Martinez P (2018) The Comparative method in biology and the essentialist trap. Frontiers in ecology and evolution 6 (AUG). https://doi.org/10.3389/fevo.2018.00130

  • Martinez P, Hartenstein V, Sprecher SG (2017) Xenacoelomorpha Nervous Systems. In: SM Sherman (ed) Oxford encyclopaedia of neurosciences. Oxford University Press

    Google Scholar 

  • Meyer-Wachsmuth I, Jondelius U (2016) Interrelationships of Nemertodermatida. Org Div Evol. https://doi.org/10.1007/s13127-015-0240-8

    Article  Google Scholar 

  • Meyer-Wachsmuth I, Raikova OI, Jondelius U (2013) The muscular system of Nemertoderma westbladi and Meara stichopi (Nemertodermatida, Acoelomorpha). Zoomorphology 132(3):239–252. https://doi.org/10.1007/s00435-013-0191-6

    Article  Google Scholar 

  • Meyer-Wachsmuth I, Curini-Galletti M, Jondelius U (2014) Hyper-cryptic marine meiofauna: species complexes in Nemertodermatida. PLoS ONE 9(9):e107688. https://doi.org/10.1371/journal.pone.0107688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno E, De Mulder K, Salvenmoser W, Ladurner P, Martínez P (2010) Inferring the ancestral function of the posterior hox gene within the Bilateria: controlling the maintenance of reproductive structures, the musculature and the nervous system in the acoel flatworm Isodiametra pulchra. Evol Dev May. https://doi.org/10.1111/j.1525-142x.2010.00411.x

    Article  Google Scholar 

  • Moreno E, Nadal M, Baguñà, J, Martínez P (2009) Tracking the origins of the Bilaterian hox patterning system: insights from the acoel flatworm Symsagittifera roscoffensis. Evol Dev 11 (5). https://doi.org/10.1111/j.1525-142X.2009.00363.x

    Article  CAS  Google Scholar 

  • Mulder K De, Kuales G, Pfister D, Willems M, Egger B, Salvenmoser W, Thaler M et al (2009) Characterization of the stem cell system of the acoel Isodiametra pulchra. BMC Dev Biol 9:69. https://doi.org/10.1186/1471-213X-9-69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mwinyi A, Bailly X, Bourlat SJ, Jondelius U, Littlewood TJ, Podsiadlowski L (2010) The phylogenetic position of Acoela as revealed by the complete mitochondrial genome of Symsagittifera roscoffensis. BMC Evol Biol 10:309. https://doi.org/10.1186/1471-2148-10-309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano H, Miyazawa H, Maeno A, Shiroishi T, Kakui K, Koyanagi R, Kanda M, Satoh N, Omori A, Kohtsuka H (2017) A new species of Xenoturbella from the western Pacific Ocean and the evolution of Xenoturbella. BMC Evol Biol 17(1):245

    Article  Google Scholar 

  • Noren M, Jondelius U (1997) Xenoturbella’s molluscan relatives. Nature 390:31–32. https://doi.org/10.1038/36242

    Article  CAS  Google Scholar 

  • Obst M, Nakano H, Bourlat SJ, Thorndyke MC, Telford MJ, Nyengaard JR, Funch P (2011) Spermatozoon ultrastructure of Xenoturbella bocki (Westblad 1949). Acta Zool 92(2):109–115. https://doi.org/10.1111/j.1463-6395.2010.00496.x

    Article  Google Scholar 

  • Paps J, Holland PWH (2018) Reconstruction of the ancestral metazoan genome reveals an increase in genomic novelty. Nat Commun 9(1):1730. https://doi.org/10.1038/s41467-018-04136-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perea-Atienza E, Gavilán B, Chiodin M, Abril J-F, Hoff KJ, Poustka AJ, Martinez P (2015) The nervous system of Xenacoelomorpha: a genomic perspective. J Exp Biol 218(Pt 4):618–628. https://doi.org/10.1242/jeb.110379

    Article  PubMed  Google Scholar 

  • Perea-Atienza E, Sprecher SG, Martínez P (2018) Characterization of the bHLH family of transcriptional regulators in the acoel S. roscoffensis and their putative role in neurogenesis. Evodevo 9:8

    Google Scholar 

  • Petrov AA, Hooge M, Tyler S (2004) Ultrastructure of sperms in Acoela (Acoelomorpha) and its concordance with molecular systematics. Invertebr Biol 123:183–197

    Article  Google Scholar 

  • Philippe H, Brinkmann H, Copley RR, Moroz LL, Nakano H, Poustka AJ, Wallberg A, Peterson KJ, Telford MJ (2011) Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 470(7333):255–258. https://doi.org/10.1038/nature09676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Philippe H, PoustkaAJ, Chiodin M, Hoff KJ, Dessimoz C, Tomiczek B, Schiffer PH, Müller S, Domman D, Horn M, Kuhl H, Timmermann B, Satoh N, Hikosaka-Katayama T, Nakano H, Rowe ML, Elphick MR, Thomas-Chollier M, Ha MJ (2019) Mitigating anticipated effects of systematic errors supports sister-group relationship between Xenacoelomorpha and Ambulacraria. Curr Biol (in press)

    Google Scholar 

  • Popova NV, Mamkaev YV (1985) Ultrastructure and primitive features of the eyes of Convoluta convoluta (Turbellaria Acoela). Dokl Akad Nauk SSSR 283:756–759

    Google Scholar 

  • Raikova OI (1991) On phylogenetic significance of ultrastructural characters in Turbellaria. In: Proceedings of the Zoological Institute of the Academy of Sciences of the USSR, pp 26–52

    Google Scholar 

  • Raikova OI (2004) Neuroanatomy of basal bilaterians (Xenoturbellida, Nemertodermatida, Acoela) and its phylogenetic implications (Ph.D. Thesis). Åbo Akademi University. Åbo, Finland

    Google Scholar 

  • Raikova OI, Justine J-L (1999) Microtubular system during spermiogenesis and in the spermatozoon of Convoluta saliens (Platyhelminthes, Acoela): tubulin immunocytochemistry and electron microscopy. Mol Reprod Dev 52:74–85

    Article  CAS  Google Scholar 

  • Raikova OI, Falleni A, Gremigni V (1995) Oogenesis in Actinoposthia beklemischevi (Platyhelminthes, Acoela): an ultrastructural and cytochemical study. Tissue Cell 27:621–633

    Article  CAS  Google Scholar 

  • Raikova OI, Reuter M, Kotikova EA, Gustafsson MKS (1998) A commissural brain! The pattern of 5-HT immunoreactivity in Acoela (Plathelminthes). Zoomorphology 118(2):69–77. https://doi.org/10.1007/s004350050058

    Article  Google Scholar 

  • Raikova OI, Reuter M, Jondelius U, Gustafsson MKS (2000a) An immunocytochemical and ultrastructural study of the nervous and muscular systems of Xenoturbella westbladi (Bilateria Inc. Sed.). Zoomorphology 120(2):107–18. https://doi.org/10.1007/s004350000028

    Article  Google Scholar 

  • Raikova OI, Reuter M, Jondelius U, Gustafsson MKS (2000b) The brain of the Nemertodermatida (Platyhelminthes) as revealed by anti-5HT and anti-FMRFamide immunostainings. Tissue Cell 32(5):358–365. https://doi.org/10.1054/tice.2000.0121

    Article  CAS  PubMed  Google Scholar 

  • Raikova OI, Reuter M, Gustafsson MKS, Maule AG, Halton DW, Jondelius U (2004a) Basiepidermal nervous system in Nemertoderma westbladi (Nemertodermatida): GYIRFamide immunoreactivity. Zoology 107(1):75–86. https://doi.org/10.1016/j.zool.2003.12.002

    Article  PubMed  Google Scholar 

  • Raikova OI, Reuter M, Gustafsson MKS, Maule AG, Halton DW, Jondelius U (2004b) Evolution of the nervous system in Paraphanostoma (Acoela). Zool Scr 33:71–88

    Article  Google Scholar 

  • Raikova OI, Meyer-Wachsmuth I, Jondelius U (2016) The plastic nervous system of Nemertodermatida. Org Div Evol 16(1):85–104. https://doi.org/10.1007/s13127-015-0248-0

    Article  Google Scholar 

  • Ramachandra NB, Gates RD, Ladurner P, Jacobs DK, Hartenstein V (2002) Embryonic development in the primitive bilaterian Neochildia fusca: normal morphogenesis and isolation of POU genes Brn-1 and Brn-3. Dev Genes Evol 212(2):55–69. https://doi.org/10.1007/s00427-001-0207-y

    Article  CAS  PubMed  Google Scholar 

  • Reisinger E (1925) Untersuchungen Am Nervensystem Der Bothrioplana semperi Braun. (Zugleich Ein Beitrag Zur Technik Der Vitalen Nervenfaerbung Und Zur Vergleichenden Anatomie Des Plathelminthennervensystem). Z Morphol Okol Tiere 5:119–149

    Article  Google Scholar 

  • Reisinger E (1960) Was ist Xenoturbella. Z Wiss Zool 164:188–198

    Google Scholar 

  • Reuter M, Raikova OI, Jondelius U, Gustafsson MKS, Maule AG, Halton, DV (2001) Organisation of the nervous system in the Acoela: an immunocytochemical study. Tissue Cell 33(2):119–28. http://www.ncbi.nlm.nih.gov/pubmed/11392663

  • Reuter M, Raikova OI, Gustafsson MKS (2001) Patterns in the nervous and muscle systems in lower flatworms. Belgian J Zool 131 (Suppl:47–53

    Google Scholar 

  • Richter S, Loesel R, Purschke G, Schmidt-Rhaesa A, Scholtz G, Stach T, Vogt L, Wanninger A, Brenneis G, Döring C, Faller S, Fritsch M, Grobe P, Heuer CM, Kaul S, Møller OS, Müller CH, Rieger V, Rothe BH, Stegner ME, Harzsch S (2010) Invertebrate neurophylogeny: suggested terms and definitions for a neuroanatomical glossary. Front Zool. 7:29. https://doi.org/10.1186/1742-9994-7-29

    Article  Google Scholar 

  • Rieger RM, Tyler S, Smith JPS III, Rieger GE (1991) Platyhelminthes: Turbellaria. In: Bogitsh BJ, Harrison FW (eds) Microscopic anatomy of invertebrates. Wiley-Liss, New York

    Google Scholar 

  • Robertson HE, Lapraz F, Egger B, Telford MJ, Schiffer PH (2017) The mitochondrial genomes of the acoelomorph worms Paratomella rubra, Isodiametra pulchra and Archaphanostoma ylvae. Sci R 7(1):1–16. https://doi.org/10.1038/s41598-017-01608-4

    Article  CAS  Google Scholar 

  • Rohde K, Watson NA, Cannon LRG (1988) Ultrastructure of epidermal cilia of Pseudactinoposthia sp. (Platyhelminthes, Acoela); implications for the phylogenetic status of the Xenoturbellida and Acoelomorpha. J Submicroscopical Cytol Pathol 20:759–767

    Google Scholar 

  • Rouse GW, Wilson NG, Carvajal JI, Vrijenhoek RC (2016) New deep-sea species of Xenoturbella and the position of Xenacoelomorpha. Nature. https://doi.org/10.1038/nature16545

    Article  PubMed  Google Scholar 

  • Ruiz-Trillo I, Riutort M, Littlewood DT, Herniou EA, Baguña J (1999) Acoel flatworms: earliest extant bilaterian metazoans, not members of Platyhelminthes. Science 283 (5409):1919–23. http://www.ncbi.nlm.nih.gov/pubmed/10082465

    Article  CAS  Google Scholar 

  • Ruiz-Trillo I, Paps J, Loukota M, Ribera C, Jondelius U, Baguñà J, Riutort M (2002) A phylogenetic analysis of myosin heavy chain type II sequences corroborates that Acoela and Nemertodermatida are basal bilaterians. Proc Natl Acad Sci 99(17):11246–11251. https://doi.org/10.1073/pnas.172390199

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Trillo I, Riutort M, Fourcade HM, Baguñà J, Boore JL (2004) Mitochondrial genome data support the basal position of Acoelomorpha and the polyphyly of the Platyhelminthes. Mol Phylogenet Evol 33(2):321–332. https://doi.org/10.1016/j.ympev.2004.06.002

    Article  CAS  PubMed  Google Scholar 

  • Schmidt-Rhaesa, A. (2007). The evolution of organ systems. Oxford University Press

    Google Scholar 

  • Semmler H, Chiodin M, Bailly X, Martinez P, Wanninger A (2010) Steps towards a centralized nervous system in basal bilaterians: insights from neurogenesis of the acoel Symsagittifera roscoffensis. Dev Growth Differ 52(8):701–713. https://doi.org/10.1111/j.1440-169X.2010.01207.x

    Article  CAS  PubMed  Google Scholar 

  • Seo HC, Edvardsen RB, Maeland AD, Bjordal M, Jensen MF, Hansen A, Flaat M, Weissenbach J, Lehrach H, Wincker P, Reinhardt R, Chourrout D (2004) Hox cluster disintegration with persistent anteroposterior order of expression in Oikopleura dioica. Nature 431(7004):67–71

    Article  CAS  Google Scholar 

  • Sikes JM, Bely AE (2010) Making heads from tails: development of a reversed anterior–posterior axis during budding in an acoel. Dev Biol 338(1):86–97. https://doi.org/10.1016/j.ydbio.2009.10.033

    Article  CAS  PubMed  Google Scholar 

  • Smith III JPS, Tyler S (1988) Frontal organs in the Nemertodermatida (Turbellaria). Am Zool 28(4):140A, #747

    Google Scholar 

  • Smith III JPS, Tyler S, Rieger RM (1986) Is the Turbellaria Polyphyletic? Hydrobiologia 132:13–21

    Article  Google Scholar 

  • Smith JPS, Tyler S (1985) Fine-structure and evolutionary implications of the frontal organ in Turbellaria Acoela. 1 Diopisthoporus gymnopharyngeus sp.n. Zool Scr 14(2):91–102. https://doi.org/10.1111/j.1463-6409.1985.tb00180.x

    Article  CAS  Google Scholar 

  • Smith JPS, Tyler S (1985) The acoel turbellarians: kingpins of metazoan evolution or a specialized offshoot?” In: Morris SC, George JD, Gibson R, Platt HM (eds) The origins and relationships of lower invertebrates, 123142. Oxford: Clarendon Press

    Google Scholar 

  • Sopott-Ehlers B, Ehlers U (1997) Ultrastructure of the subepidermal musculature of Xenoturbella bocki, the adelphotaxon of the Bilateria. Zoomorphology 117:71–79. https://doi.org/10.1007/s004350050032

    Article  Google Scholar 

  • Sprecher SG, Bernardo-Garcia F-J, van Giesen L, Hartenstein V, Reichert H, Neves R, Bailly X et al. (2015) Functional brain regeneration in the acoel worm Symsagittifera roscoffensis. Biology Open 4 (12):1688–95. https://doi.org/10.1242/bio.014266

    Article  CAS  Google Scholar 

  • Srivastava M, Mazza-Curll KL, van Wolfswinkel JC, Reddien PW (2014) Whole-body acoel regeneration is controlled by wnt and bmp-admp signaling. Curr Biol CB 24(10):1107–1113. https://doi.org/10.1016/j.cub.2014.03.042

    Article  CAS  PubMed  Google Scholar 

  • Sterrer W (1998) New and known Nemertodermatida (Platyhelminthes-Acoelomorpha): a revision. Belgian J Zool 128(1):55–92. https://www.researchgate.net/publication/265923621_New_and_known_Nemertodermatida_Platyhelminthes-Acoelomorpha_A_revision

  • Tekle YI, Raikova OI, Justine J-L, Jondelius U (2007a) Ultrastructure and tubulin immunocytochemistry of the copulatory stylet-like structure in Childia species (Acoela). J Morphol 268:166–180

    Article  Google Scholar 

  • Tekle YI, Raikova OI, Justine J-L, Hendelberg J, Jondelius U (2007b) Ultrastructural and immunocytochemical investigation of acoel sperms with 9+ 1 axoneme structure: new sperm characters for unraveling phylogeny in Acoela. Zoomorphology 126:1–16

    Article  Google Scholar 

  • Telford MJ, Lockyer AE, Cartwright-Finch C, Littlewood TJ (2003) Combined large and small subunit ribosomal RNA phylogenies support a basal position of the acoelomorph flatworms. Proc Biol Sci 270 (1519):1077–83. https://doi.org/10.1098/rspb.2003.2342

    Article  CAS  Google Scholar 

  • Thiel D, Franz-Wachtel M, Aguilera F, Hejnol A (2018) Xenacoelomorph neuropeptidomes reveal a major expansion of neuropeptide systems during early bilaterian evolution. Mol Biol Evol 35(10):2528–2543. https://doi.org/10.1093/molbev/msy160

    Article  CAS  PubMed Central  Google Scholar 

  • Todt C (2009) Structure and evolution of the pharynx simplex in acoel flatworms (Acoela). J Morphol 270(3):271–290. https://doi.org/10.1002/jmor.10682

    Article  PubMed  Google Scholar 

  • Todt C, Tyler S (2006) Ciliary receptors associated with the mouth and pharynx of Acoela (Acoelomorpha): a comparative ultrastructural study. Acta Zoologica 88(1):41–58. https://doi.org/10.1111/j.1463-6395.2007.00246.x

    Article  Google Scholar 

  • Tyler S (1979) Distinctive features of cilia in metazoans and their significance for systematics. Tissue Cell 11:385–400

    Article  CAS  Google Scholar 

  • Tyler S, Hooge MD (2004) Comparative morphology of the body wall in flatworms (Platyhelminthes). Can J Zool 82:194–210

    Article  Google Scholar 

  • Tyler S, Rieger RM (1975) Uniflagellate spermatozoa in Nemertoderma (Turbellaria) and their phylogenetic significance. Science 188:730–732

    Article  CAS  Google Scholar 

  • Tyler S, Rieger RM (1977) Ultrastructural evidence for the systematic position of the Nemertodermatida (Turbellaria). Acta Zool Fennica 54:193–207

    Google Scholar 

  • Uljanin WN (1870) Die Turbellarien Der Bucht von Sebastopol. Arbeiten Der 2.Versammlung Russischer Naturforscher Zu Moskau. 1869:1–96

    Google Scholar 

  • Westblad E (1937) Die Turbellarien-Gattung Nemertoderma Steinböck. Acta Societatis pro Fauna et Flora Fennica 60:45–89

    Google Scholar 

  • Westblad E (1940) Studien Über Skandinavische Turbellaria Acoela. I. Arkiv För Zoologi 32A(20):1–28

    Google Scholar 

  • Westblad E (1942) Studien Über Skandinavische Turbellaria Acoela. II. Arkiv För Zoologi 33A(14):1–48

    Google Scholar 

  • Westblad E (1945) Studien Über Skandinavische Turbellaria Acoela. III. Ark Zool. 36A(5):1–56

    Google Scholar 

  • Westblad E (1946) Studien Über Skandinavische Turbellaria Acoela. IV. Ark Zool 38A(1):1–56

    Google Scholar 

  • Westblad E (1948) Studien Über Skandinavische Turbellaria Acoela. V. Ark Zool 41:191–273

    Google Scholar 

  • Westblad E (1949a) On Meara stichopi (Bock) Westblad, a new representative of Turbellaria archoophora. Ark Zool Ser 2 1(5):43–57

    Google Scholar 

  • Westblad E (1949b) Xenoturbella bocki N.g., N. Sp., a peculiar, primitive Turbellarian type. Ark. Zool 1:3–29

    Google Scholar 

  • Yamasu T (1991) Fine structure and function of ocelli and sagittocysts of acoel flatworms. Hydrobiologia 227(1):273–282. https://doi.org/10.1007/BF00027612

    Article  Google Scholar 

  • Zabotin YI (2019) Ultrastructure of epidermal sensillae in three species of Acoela. Invertebr Zool 6(1):71–77

    Article  Google Scholar 

Download references

Acknowledgements

Funding from The Swedish Research Council (project 2018-05191) is gratefully acknowledged by Ulf Jondelius. The work of Olga Raikova was supported by the Ministry of Education and Science of the Russian Federation (project no. AAAA-A19-119020690076-7) and the RFBR (project numbers 16-04-00593a and 20-04-01006a). We would also like to thank Dr. Pierre Pontarotti (Marseille) for organizing the yearly “Evolutionary Biology Meeting” in Marseille and for inviting us to submit this chapter.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ulf Jondelius , Olga I. Raikova or Pedro Martinez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jondelius, U., Raikova, O.I., Martinez, P. (2019). Xenacoelomorpha, a Key Group to Understand Bilaterian Evolution: Morphological and Molecular Perspectives. In: Pontarotti, P. (eds) Evolution, Origin of Life, Concepts and Methods. Springer, Cham. https://doi.org/10.1007/978-3-030-30363-1_14

Download citation

Publish with us

Policies and ethics