Genetic Diversity of the Apoptotic Pathway in Insects

  • Mélanie Ribeiro LopesEmail author
  • Nicolas Parisot
  • Patrick Callaerts
  • Federica CalevroEmail author


Programmed cell death is an intrinsic part of normal development, physiology and organismal homeostasis. Apoptosis is a widespread form of regulated cell death, controlled by a genetically encoded machinery conserved throughout evolution. In the highly diverse group of insects, apoptotic pathways have been characterized in only a few dipteran and lepidopteran species, where they have been shown to be essential for development, metamorphosis and immunity-related processes. The lack of studies in other insect orders clearly limits our understanding of the role of apoptosis in the life history of insects.


Insects Apoptosis Caspases IAPs IAP antagonists Bcl-2 


  1. Abdelwahid E, Yokokura T, Krieser RJ, Balasundaram S, Fowle WH, White K (2007) Mitochondrial disruption in Drosophila apoptosis. Dev Cell 12(5):793–806PubMedCrossRefPubMedCentralGoogle Scholar
  2. Accorsi A, Zibaee A, Malagoli D (2015) The multifaceted activity of insect caspases. J Insect Physiol 76:17–23PubMedCrossRefPubMedCentralGoogle Scholar
  3. Ahmad M, Srinivasula SM, Wang L, Litwack G, Fernandes-Alnemri T, Alnemri ES (1997) Spodoptera frugiperda caspase-1, a novel insect death protease that cleaves the nuclear immunophilin FKBP46, is the target of the baculovirus antiapoptotic protein p35. J Biol Chem 272(3):1421–1424PubMedCrossRefPubMedCentralGoogle Scholar
  4. Arama E, Agapite J, Steller H (2003) Caspase activity and a specific cytochrome C are required for sperm differentiation in Drosophila. Dev Cell 4(5):687–697PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bartholomay LC, Cho WL, Rocheleau TA, Boyle JP, Beck ET, Fuchs JF, Liss P, Rusch M, Butler KM, Wu RC, Lin SP, Kuo HY, Tsao IY, Huang CY, Liu TT, Hsiao KJ, Tsai SF, Yang UC, Nappi AJ, Perna NT, Chen CC, Christensen BM (2004) Description of the transcriptomes of immune response-activated hemocytes from the mosquito vectors Aedes aegypti and Armigeres subalbatus. Infect Immun 72(7):4114–4126PubMedPubMedCentralCrossRefGoogle Scholar
  6. Baum JS, Arama E, Steller H, McCall K (2007) The Drosophila caspases Strica and Dronc function redundantly in programmed cell death during oogenesis. Cell Death Differ 14(8):1508–1517PubMedCrossRefPubMedCentralGoogle Scholar
  7. Beck ET, Blair CD, Black WC, Beaty BJ, Blitvich BJ (2007) Alternative splicing generates multiple transcripts of the inhibitor of apoptosis protein 1 in Aedes and Culex spp. mosquitoes. Insect Biochem Mol Biol 37(11):1222–1233PubMedPubMedCentralCrossRefGoogle Scholar
  8. Benedict MA, Hu Y, Inohara N, Nunez G (2000) Expression and functional analysis of Apaf-1 isoforms. Extra Wd-40 repeat is required for cytochrome c binding and regulated activation of procaspase-9. J Biol Chem 275(12):8461–8468PubMedCrossRefPubMedCentralGoogle Scholar
  9. Berthelet J, Dubrez L (2013) Regulation of apoptosis by Inhibitors of Apoptosis (IAPs). Cells 2(1):163–187PubMedPubMedCentralCrossRefGoogle Scholar
  10. Blitvich BJ, Blair CD, Kempf BJ, Hughes MT, Black WC, Mackie RS, Meredith CT, Beaty BJ, Rayms-Keller A (2002) Developmental- and tissue-specific expression of an inhibitor of apoptosis protein 1 homologue from Aedes triseriatus mosquitoes. Insect Mol Biol 11(5):431–442PubMedCrossRefPubMedCentralGoogle Scholar
  11. Brodsky MH, Nordstrom W, Tsang G, Kwan E, Rubin GM, Abrams JM (2000) Drosophila p53 binds a damage response element at the reaper locus. Cell 101(1):103–113PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bryant B, Blair CD, Olson KE, Clem RJ (2008) Annotation and expression profiling of apoptosis-related genes in the yellow fever mosquito, Aedes aegypti. Insect Biochem Mol Biol 38(3):331–345PubMedPubMedCentralGoogle Scholar
  13. Bryant B, Zhang Y, Zhang C, Santos CP, Clem RJ, Zhou L (2009) A lepidopteran orthologue of reaper reveals functional conservation and evolution of IAP antagonists. Insect Mol Biol 18(3):341–351PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bryant B, Ungerer MC, Liu Q, Waterhouse RM, Clem RJ (2010) A caspase-like decoy molecule enhances the activity of a paralogous caspase in the yellow fever mosquito, Aedes aegypti. Insect Biochem Mol Biol 40(7):516–523PubMedPubMedCentralCrossRefGoogle Scholar
  15. Budhidarmo R, Day CL (2015) IAPs: modular regulators of cell signalling. Semin Cell Dev Biol 39:80–90PubMedCrossRefPubMedCentralGoogle Scholar
  16. Chai J, Yan N, Huh JR, Wu JW, Li W, Hay BA, Shi Y (2003) Molecular mechanism of Reaper-Grim-Hid-mediated suppression of DIAP1-dependent Dronc ubiquitination. Nat Struct Biol 10(11):892–898PubMedCrossRefPubMedCentralGoogle Scholar
  17. Chen P, Nordstrom W, Gish B, Abrams JM (1996) grim, a novel cell death gene in Drosophila. Genes Dev 10(14):1773–1782PubMedCrossRefPubMedCentralGoogle Scholar
  18. Chen P, Rodriguez A, Erskine R, Thach T, Abrams JM (1998) Dredd, a novel effector of the apoptosis activators reaper, grim, and hid in Drosophila. Dev Biol 201(2):202–216PubMedCrossRefPubMedCentralGoogle Scholar
  19. Christophides GK, Zdobnov E, Barillas-Mury C, Birney E, Blandin S, Blass C, Brey PT, Collins FH, Danielli A, Dimopoulos G, Hetru C, Hoa NT, Hoffmann JA, Kanzok SM, Letunic I, Levashina EA, Loukeris TG, Lycett G, Meister S, Michel K, Moita LF, Muller HM, Osta MA, Paskewitz SM, Reichhart JM, Rzhetsky A, Troxler L, Vernick KD, Vlachou D, Volz J, von Mering C, Xu J, Zheng L, Bork P, Kafatos FC (2002) Immunity-related genes and gene families in Anopheles gambiae. Science 298(5591):159–165PubMedCrossRefPubMedCentralGoogle Scholar
  20. Clavier A, Rincheval-Arnold A, Colin J, Mignotte B, Guenal I (2016) Apoptosis in Drosophila: which role for mitochondria? Apoptosis 21(3):239–251PubMedCrossRefPubMedCentralGoogle Scholar
  21. Clem RJ (2005) The role of apoptosis in defense against baculovirus infection in insects. Curr Top Microbiol Immunol 289:113–129PubMedPubMedCentralGoogle Scholar
  22. Colin J, Garibal J, Clavier A, Szuplewski S, Risler Y, Milet C, Gaumer S, Guenal I, Mignotte B (2015) Screening of suppressors of bax-induced cell death identifies glycerophosphate oxidase-1 as a mediator of debcl-induced apoptosis in Drosophila. Genes Cancer 6(5–6):241–253PubMedPubMedCentralGoogle Scholar
  23. Colussi PA, Quinn LM, Huang DC, Coombe M, Read SH, Richardson H, Kumar S (2000) Debcl, a proapoptotic Bcl-2 homologue, is a component of the Drosophila melanogaster cell death machinery. J Cell Biol 148(4):703–714PubMedPubMedCentralCrossRefGoogle Scholar
  24. Cooper DM, Pio F, Thi EP, Theilmann D, Lowenberger C (2007a) Characterization of Aedes Dredd: a novel initiator caspase from the yellow fever mosquito, Aedes aegypti. Insect Biochem Mol Biol 37(6):559–569PubMedCrossRefPubMedCentralGoogle Scholar
  25. Cooper DM, Thi EP, Chamberlain CM, Pio F, Lowenberger C (2007b) Aedes Dronc: a novel ecdysone-inducible caspase in the yellow fever mosquito, Aedes aegypti. Insect Mol Biol 16(5):563–572PubMedPubMedCentralGoogle Scholar
  26. Cooper DM, Chamberlain CM, Lowenberger C (2009a) Aedes FADD: a novel death domain-containing protein required for antibacterial immunity in the yellow fever mosquito, Aedes aegypti. Insect Biochem Mol Biol 39(1):47–54PubMedCrossRefPubMedCentralGoogle Scholar
  27. Cooper DM, Granville DJ, Lowenberger C (2009b) The insect caspases. Apoptosis 14(3):247–256PubMedCrossRefPubMedCentralGoogle Scholar
  28. Courtiade J, Pauchet Y, Vogel H, Heckel DG (2011) A comprehensive characterization of the caspase gene family in insects from the order Lepidoptera. BMC Genom 12:357CrossRefGoogle Scholar
  29. Crook NE, Clem RJ, Miller LK (1993) An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif. J Virol 67(4):2168–2174PubMedPubMedCentralGoogle Scholar
  30. Denton D, Kumar S (2015) Studying apoptosis in Drosophila. Cold Spring Harbor Protoc 2015(7):609–613Google Scholar
  31. Denton D, Aung-Htut MT, Kumar S (2013) Developmentally programmed cell death in Drosophila. Biochim Biophys Acta 1833(12):3499–3506PubMedCrossRefPubMedCentralGoogle Scholar
  32. Ditzel M, Broemer M, Tenev T, Bolduc C, Lee TV, Rigbolt KT, Elliott R, Zvelebil M, Blagoev B, Bergmann A, Meier P (2008) Inactivation of effector caspases through nondegradative polyubiquitylation. Mol Cell 32(4):540–553PubMedPubMedCentralCrossRefGoogle Scholar
  33. Domingues C, Ryoo HD (2012) Drosophila BRUCE inhibits apoptosis through non-lysine ubiquitination of the IAP-antagonist REAPER. Cell Death Differ 19(3):470–477PubMedCrossRefPubMedCentralGoogle Scholar
  34. Dorstyn L, Kumar S (2008) A biochemical analysis of the activation of the Drosophila caspase DRONC. Cell Death Differ 15(3):461–470PubMedCrossRefPubMedCentralGoogle Scholar
  35. Dorstyn L, Colussi PA, Quinn LM, Richardson H, Kumar S (1999a) DRONC, an ecdysone-inducible Drosophila caspase. Proc Natl Acad Sci U S A 96(8):4307–4312PubMedPubMedCentralCrossRefGoogle Scholar
  36. Dorstyn L, Read SH, Quinn LM, Richardson H, Kumar S (1999b) DECAY, a novel Drosophila caspase related to mammalian caspase-3 and caspase-7. J Biol Chem 274(43):30778–30783PubMedCrossRefPubMedCentralGoogle Scholar
  37. Dorstyn L, Mills K, Lazebnik Y, Kumar S (2004) The two cytochrome c species, DC3 and DC4, are not required for caspase activation and apoptosis in Drosophila cells. J Cell Biol 167(3):405–410PubMedPubMedCentralCrossRefGoogle Scholar
  38. Doumanis J, Quinn L, Richardson H, Kumar S (2001) STRICA, a novel Drosophila melanogaster caspase with an unusual serine/threonine-rich prodomain, interacts with DIAP1 and DIAP2. Cell Death Differ 8(4):387–394PubMedCrossRefPubMedCentralGoogle Scholar
  39. Du C, Fang M, Li Y, Li L, Wang X (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102(1):33–42PubMedPubMedCentralCrossRefGoogle Scholar
  40. Fuentes-Prior P, Salvesen GS (2004) The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem J 384(Pt 2):201–232PubMedPubMedCentralCrossRefGoogle Scholar
  41. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Annicchiarico-Petruzzelli M, Antonov AV, Arama E, Baehrecke EH, Barlev NA, Bazan NG, Bernassola F, Bertrand MJM, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Boya P, Brenner C, Campanella M, Candi E, Carmona-Gutierrez D, Cecconi F, Chan FK, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Cohen GM, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D’Angiolella V, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, DeBerardinis RJ, Deshmukh M, Di Daniele N, Di Virgilio F, Dixit VM, Dixon SJ, Duckett CS, Dynlacht BD, El-Deiry WS, Elrod JW, Fimia GM, Fulda S, García-Sáez AJ, Garg AD, Garrido C, Gavathiotis E, Golstein P, Gottlieb E, Green DR, Greene LA, Gronemeyer H, Gross A, Hajnoczky G, Hardwick JM, Harris IS, Hengartner MO, Hetz C, Ichijo H, Jäättelä M, Joseph B, Jost PJ, Juin PP, Kaiser WJ, Karin M, Kaufmann T, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Knight RA, Kumar S, Lee SW, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Lowe SW, Luedde T, Lugli E, MacFarlane M, Madeo F, Malewicz M, Malorni W, Manic G, Marine JC, Martin SJ, Martinou JC, Medema JP, Mehlen P, Meier P, Melino S, Miao EA, Molkentin JD, Moll UM, Muñoz-Pinedo C, Nagata S, Nuñez G, Oberst A, Oren M, Overholtzer M, Pagano M, Panaretakis T, Pasparakis M, Penninger JM, Pereira DM, Pervaiz S, Peter ME, Piacentini M, Pinton P, Prehn JHM, Puthalakath H, Rabinovich GA, Rehm M, Rizzuto R, Rodrigues CMP, Rubinsztein DC, Rudel T, Ryan KM, Sayan E, Scorrano L, Shao F, Shi Y, Silke J, Simon HU, Sistigu A, Stockwell BR, Strasser A, Szabadkai G, Tait SWG, Tang D, Tavernarakis N, Thorburn A, Tsujimoto Y, Turk B, Vanden Berghe T, Vandenabeele P, Vander Heiden MG, Villunger A, Virgin HW, Vousden KH, Vucic D, Wagner EF, Walczak H, Wallach D, Wang Y, Wells JA, Wood W, Yuan J, Zakeri Z, Zhivotovsky B, Zitvogel L, Melino G, Kroemer G (2018) Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death. Cell Death Differ 25(3):486–541PubMedPubMedCentralCrossRefGoogle Scholar
  42. Girard YA, Schneider BS, McGee CE, Wen J, Han VC, Popov V, Mason PW, Higgs S (2007) Salivary gland morphology and virus transmission during long-term cytopathologic West Nile virus infection in Culex mosquitoes. Am J Trop Med Hyg 76(1):118–128PubMedCrossRefPubMedCentralGoogle Scholar
  43. Grimaldi D, Engel MS (2005) Evolution of the Insects, 755pp. Cambridge University Press, New York, MelbourneGoogle Scholar
  44. Hansen AK, Moran NA (2014) The impact of microbial symbionts on host plant utilization by herbivorous insects. Mol Ecol 23(6):1473–1496PubMedCrossRefPubMedCentralGoogle Scholar
  45. Harvey NL, Daish T, Mills K, Dorstyn L, Quinn LM, Read SH, Richardson H, Kumar S (2001) Characterization of the Drosophila caspase, DAMM. J Biol Chem 276(27):25342–25350PubMedCrossRefPubMedCentralGoogle Scholar
  46. Hawkins CJ, Yoo SJ, Peterson EP, Wang SL, Vernooy SY, Hay BA (2000) The Drosophila caspase DRONC cleaves following glutamate or aspartate and is regulated by DIAP1, HID, and GRIM. J Biol Chem 275(35):27084–27093PubMedPubMedCentralGoogle Scholar
  47. Hay BA, Guo M (2006) Caspase-dependent cell death in Drosophila. Annu Rev Cell Dev Biol 22:623–650PubMedCrossRefPubMedCentralGoogle Scholar
  48. Hegde R, Srinivasula SM, Zhang Z, Wassell R, Mukattash R, Cilenti L, DuBois G, Lazebnik Y, Zervos AS, Fernandes-Alnemri T, Alnemri ES (2002) Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J Biol Chem 277(1):432–438PubMedCrossRefPubMedCentralGoogle Scholar
  49. Hu S, Yang X (2000) dFADD, a novel death domain-containing adapter protein for the Drosophila caspase DREDD. J Biol Chem 275(40):30761–30764PubMedCrossRefPubMedCentralGoogle Scholar
  50. Hu Y, Benedict MA, Ding L, Nunez G (1999) Role of cytochrome c and dATP/ATP hydrolysis in Apaf-1-mediated caspase-9 activation and apoptosis. EMBO J 18(13):3586–3595PubMedPubMedCentralCrossRefGoogle Scholar
  51. Huang Q, Deveraux QL, Maeda S, Stennicke HR, Hammock BD, Reed JC (2001) Cloning and characterization of an inhibitor of apoptosis protein (IAP) from Bombyx mori. Biochim Biophys Acta 1499(3):191–198PubMedCrossRefPubMedCentralGoogle Scholar
  52. Huang N, Civciristov S, Hawkins CJ, Clem RJ (2013) SfDronc, an initiator caspase involved in apoptosis in the fall armyworm Spodoptera frugiperda. Insect Biochem Mol Biol 43(5):444–454PubMedPubMedCentralCrossRefGoogle Scholar
  53. Huang HJ, Bao YY, Lao SH, Huang XH, Ye YZ, Wu JX, Xu HJ, Zhou XP, Zhang CX (2015) Rice ragged stunt virus-induced apoptosis affects virus transmission from its insect vector, the brown planthopper to the rice plant. Sci Rep 5:11413PubMedPubMedCentralCrossRefGoogle Scholar
  54. Igaki T, Miura M (2004) Role of Bcl-2 family members in invertebrates. Biochim Biophys Acta 1644(2–3):73–81PubMedCrossRefPubMedCentralGoogle Scholar
  55. Jiang C, Lamblin AF, Steller H, Thummel CS (2000) A steroid-triggered transcriptional hierarchy controls salivary gland cell death during Drosophila metamorphosis. Mol Cell 5(3):445–455PubMedCrossRefPubMedCentralGoogle Scholar
  56. Jones G, Jones D, Zhou L, Steller H, Chu Y (2000) Deterin, a new inhibitor of apoptosis from Drosophila melanogaster. J Biol Chem 275(29):22157–22165PubMedCrossRefPubMedCentralGoogle Scholar
  57. Kale J, Osterlund EJ, Andrews DW (2018) BCL-2 family proteins: changing partners in the dance towards death. Cell Death Differ 25(1):65–80PubMedCrossRefPubMedCentralGoogle Scholar
  58. Kalkavan H, Green DR (2018) MOMP, cell suicide as a BCL-2 family business. Cell Death Differ 25(1):46–55PubMedCrossRefPubMedCentralGoogle Scholar
  59. Kilpatrick ZE, Cakouros D, Kumar S (2005) Ecdysone-mediated up-regulation of the effector caspase DRICE is required for hormone-dependent apoptosis in Drosophila cells. J Biol Chem 280(12):11981–11986PubMedCrossRefPubMedCentralGoogle Scholar
  60. Kornbluth S, White K (2005) Apoptosis in Drosophila: neither fish nor fowl (nor man, nor worm). J Cell Sci 118(Pt 9):1779–1787PubMedCrossRefPubMedCentralGoogle Scholar
  61. Kumar S (2007) Caspase function in programmed cell death. Cell Death Differ 14(1):32–43PubMedCrossRefPubMedCentralGoogle Scholar
  62. Kumar S, Doumanis J (2000) The fly caspases. Cell Death Differ 7(11):1039–1044PubMedCrossRefPubMedCentralGoogle Scholar
  63. Kumarswamy R, Seth RK, Dwarakanath BS, Chandna S (2009) Mitochondrial regulation of insect cell apoptosis: evidence for permeability transition pore-independent cytochrome-c release in the Lepidopteran Sf9 cells. Int J Biochem Cell Biol 41(6):1430–1440PubMedCrossRefPubMedCentralGoogle Scholar
  64. Kurada P, White K (1998) Ras promotes cell survival in Drosophila by downregulating hid expression. Cell 95(3):319–329PubMedCrossRefPubMedCentralGoogle Scholar
  65. Kvansakul M, Hinds MG (2015) The Bcl-2 family: structures, interactions and targets for drug discovery. Apoptosis 20(2):136–150PubMedCrossRefPubMedCentralGoogle Scholar
  66. Lamkanfi M, Declercq W, Kalai M, Saelens X, Vandenabeele P (2002) Alice in caspase land. A phylogenetic analysis of caspases from worm to man. Cell Death Differ 9(4):358–361PubMedCrossRefPubMedCentralGoogle Scholar
  67. Leulier F, Lhocine N, Lemaitre B, Meier P (2006a) The Drosophila inhibitor of apoptosis protein DIAP2 functions in innate immunity and is essential to resist gram-negative bacterial infection. Mol Cell Biol 26(21):7821–7831PubMedPubMedCentralCrossRefGoogle Scholar
  68. Leulier F, Ribeiro PS, Palmer E, Tenev T, Takahashi K, Robertson D, Zachariou A, Pichaud F, Ueda R, Meier P (2006b) Systematic in vivo RNAi analysis of putative components of the Drosophila cell death machinery. Cell Death Differ 13(10):1663–1674PubMedCrossRefPubMedCentralGoogle Scholar
  69. Li Q, Li H, Blitvich BJ, Zhang J (2007) The Aedes albopictus inhibitor of apoptosis 1 gene protects vertebrate cells from bluetongue virus-induced apoptosis. Insect Mol Biol 16(1):93–105PubMedCrossRefPubMedCentralGoogle Scholar
  70. Liu Q, Clem RJ (2011) Defining the core apoptosis pathway in the mosquito disease vector Aedes aegypti: the roles of iap1, ark, dronc, and effector caspases. Apoptosis 16(2):105–113PubMedPubMedCentralCrossRefGoogle Scholar
  71. Liu Q, Qi Y, Chejanovsky N (2005) Spodoptera littoralis caspase-1, a Lepidopteran effector caspase inducible by apoptotic signaling. Apoptosis 10(4):787–795PubMedCrossRefPubMedCentralGoogle Scholar
  72. Lockshin RA, Williams CM (1965) Programmed cell death. V. Cytolytic enzymes in relation to the breakdown of the intersegmental muscles of silkmoths. J Insect Physiol 11(7):831–844PubMedCrossRefPubMedCentralGoogle Scholar
  73. Malin JZ, Shaham S (2015) Cell death in C. elegans development. Curr Top Dev Biol 114:1–42PubMedPubMedCentralCrossRefGoogle Scholar
  74. Meinander A, Runchel C, Tenev T, Chen L, Kim CH, Ribeiro PS, Broemer M, Leulier F, Zvelebil M, Silverman N, Meier P (2012) Ubiquitylation of the initiator caspase DREDD is required for innate immune signalling. EMBO J 31(12):2770–2783PubMedPubMedCentralCrossRefGoogle Scholar
  75. Mendes CS, Arama E, Brown S, Scherr H, Srivastava M, Bergmann A, Steller H, Mollereau B (2006) Cytochrome c-d regulates developmental apoptosis in the Drosophila retina. EMBO Rep 7(9):933–939PubMedPubMedCentralCrossRefGoogle Scholar
  76. Meng K, Li X, Wang S, Zhong C, Yang Z, Feng L, Liu Q (2016) The Strica homolog AaCASPS16 is involved in apoptosis in the yellow fever vector, Aedes albopictus. PLoS ONE 11(6):e0157846PubMedPubMedCentralCrossRefGoogle Scholar
  77. Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, Frandsen PB, Ware J, Flouri T, Beutel RG, Niehuis O, Petersen M, Izquierdo-Carrasco F, Wappler T, Rust J, Aberer AJ, Aspöck U, Aspöck H, Bartel D, Blanke A, Berger S, Böhm A, Buckley TR, Calcott B, Chen J, Friedrich F, Fukui M, Fujita M, Greve C, Grobe P, Gu PS, Huang Y, Jermiin LS, Kawahara AY, Krogmann L, Kubiak M, Lanfear R, Letsch H, Li Y, Li Z, Li J, Lu H, Machida R, Mashimo Y, Kapli P, McKenna DD, Meng G, Nakagaki Y, Navarrete-Heredia JL, Ott M, Ou Y, Pass G, Podsiadlowski L, Pohl H, von Reumont BM, Schütte K, Sekiya K, Shimizu S, Slipinski A, Stamatakis A, Song W, Su X, Szucsich NU, Tan M, Tan X, Tang M, Tang J, Timelthaler G, Tomizuka S, Trautwein M, Tong X, Uchifune T, Walzl MG, Wiegmann BM, Wilbrandt J, Wipfler B, Wong TK, Wu Q, Wu G, Xie Y, Yang S, Yang Q, Yeates DK, Yoshizawa K, Zhang Q, Zhang R, Zhang W, Zhang Y, Zhao J, Zhou C, Zhou L, Ziesmann T, Zou S, Li Y, Xu X, Zhang Y, Yang H, Wang J, Wang J, Kjer KM, Zhou X (2014) Phylogenomics resolves the timing and pattern of insect evolution. Science 346(6210):763–767PubMedCrossRefPubMedCentralGoogle Scholar
  78. Miura, M. (2012). Apoptotic and nonapoptotic caspase functions in animal development. Cold Spring Harb Perspect Biol 4(10)PubMedPubMedCentralCrossRefGoogle Scholar
  79. Muro I, Berry DL, Huh JR, Chen CH, Huang H, Yoo SJ, Guo M, Baehrecke EH, Hay BA (2006) The Drosophila caspase Ice is important for many apoptotic cell deaths and for spermatid individualization, a nonapoptotic process. Development 133(17):3305–3315PubMedCrossRefPubMedCentralGoogle Scholar
  80. Olson MR, Holley CL, Gan EC, Colon-Ramos DA, Kaplan B, Kornbluth S (2003) A GH3-like domain in reaper is required for mitochondrial localization and induction of IAP degradation. J Biol Chem 278(45):44758–44768PubMedCrossRefPubMedCentralGoogle Scholar
  81. Opferman JT, Korsmeyer SJ (2003) Apoptosis in the development and maintenance of the immune system. Nat Immunol 4(5):410–415PubMedCrossRefPubMedCentralGoogle Scholar
  82. Orme M, Meier P (2009) Inhibitor of apoptosis proteins in Drosophila: gatekeepers of death. Apoptosis 14(8):950–960PubMedCrossRefPubMedCentralGoogle Scholar
  83. Pang Y, Bai XC, Yan C, Hao Q, Chen Z, Wang JW, Scheres SH, Shi Y (2015) Structure of the apoptosome: mechanistic insights into activation of an initiator caspase from Drosophila. Genes Dev 29(3):277–287PubMedPubMedCentralCrossRefGoogle Scholar
  84. Parrish AB, Freel CD, Kornbluth S (2013) Cellular mechanisms controlling caspase activation and function. Cold Spring Harb Perspect Biol 5(6)PubMedPubMedCentralCrossRefGoogle Scholar
  85. Pei Z, Reske G, Huang Q, Hammock BD, Qi Y, Chejanovsky N (2002) Characterization of the apoptosis suppressor protein P49 from the Spodoptera littoralis nucleopolyhedrovirus. J Biol Chem 277(50):48677–48684PubMedCrossRefPubMedCentralGoogle Scholar
  86. Pellettieri J, Sanchez Alvarado A (2007) Cell turnover and adult tissue homeostasis: from humans to planarians. Annu Rev Genet 41:83–105PubMedCrossRefPubMedCentralGoogle Scholar
  87. Puglise JM, Estep AS, Becnel JJ (2016) Expression profiles and RNAi silencing of inhibitor of apoptosis transcripts in Aedes, Anopheles, and Culex Mosquitoes (Diptera: Culicidae). J Med Entomol 53(2):304–314PubMedCrossRefPubMedCentralGoogle Scholar
  88. Quinn LM, Dorstyn L, Mills K, Colussi PA, Chen P, Coombe M, Abrams J, Kumar S, Richardson H (2000) An essential role for the caspase dronc in developmentally programmed cell death in Drosophila. J Biol Chem 275(51):40416–40424PubMedCrossRefPubMedCentralGoogle Scholar
  89. Quinn L, Coombe M, Mills K, Daish T, Colussi P, Kumar S, Richardson H (2003) Buffy, a Drosophila Bcl-2 protein, has anti-apoptotic and cell cycle inhibitory functions. EMBO J 22(14):3568–3579PubMedPubMedCentralCrossRefGoogle Scholar
  90. Ribeiro PS, Kuranaga E, Tenev T, Leulier F, Miura M, Meier P (2007) DIAP2 functions as a mechanism-based regulator of drICE that contributes to the caspase activity threshold in living cells. J Cell Biol 179(7):1467–1480PubMedPubMedCentralCrossRefGoogle Scholar
  91. Rodriguez A, Oliver H, Zou H, Chen P, Wang X, Abrams JM (1999) Dark is a Drosophila homologue of Apaf-1/CED-4 and functions in an evolutionarily conserved death pathway. Nat Cell Biol 1(5):272–279PubMedCrossRefPubMedCentralGoogle Scholar
  92. Saraste A, Pulkki K (2000) Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res 45(3):528–537PubMedCrossRefPubMedCentralGoogle Scholar
  93. Sehnal F, Svacha P, Zrzavy JAN (1996) Evolution of Insect Metamorphosis. In: Gilbert LI, Tata JR, Atkinson BG (eds) Metamorphosis Postembryonic reprograming of gene expression in amphibian and insect cells. Academic Press, San Diego, pp 3–58Google Scholar
  94. Seol DW, Billiar TR (1999) A caspase-9 variant missing the catalytic site is an endogenous inhibitor of apoptosis. J Biol Chem 274(4):2072–2076PubMedCrossRefPubMedCentralGoogle Scholar
  95. Shapiro PJ, Hsu HH, Jung H, Robbins ES, Ryoo HD (2008) Regulation of the Drosophila apoptosome through feedback inhibition. Nat Cell Biol 10(12):1440–1446PubMedPubMedCentralCrossRefGoogle Scholar
  96. Shi Y (2002) A conserved tetrapeptide motif: potentiating apoptosis through IAP-binding. Cell Death Differ 9(2):93–95PubMedCrossRefPubMedCentralGoogle Scholar
  97. Shlevkov E, Morata G (2012) A dp53/JNK-dependant feedback amplification loop is essential for the apoptotic response to stress in Drosophila. Cell Death Differ 19(3):451–460PubMedCrossRefPubMedCentralGoogle Scholar
  98. Shu B, Zhang J, Sethuraman V, Cui G, Yi X, Zhong G (2017) Transcriptome analysis of Spodoptera frugiperda Sf9 cells reveals putative apoptosis-related genes and a preliminary apoptosis mechanism induced by azadirachtin. Sci Rep 7(1):13231PubMedPubMedCentralCrossRefGoogle Scholar
  99. Silke J, Vaux DL (2001) Two kinds of BIR-containing protein - inhibitors of apoptosis, or required for mitosis. J Cell Sci 114(Pt 10):1821–1827PubMedPubMedCentralGoogle Scholar
  100. Simonet P, Gaget K, Balmand S, Ribeiro Lopes M, Parisot N, Buhler K, Duport G, Vulsteke V, Febvay G, Heddi A, Charles H, Callaerts P, Calevro F (2018) Bacteriocyte cell death in the pea aphid/Buchnera symbiotic system. Proc Natl Acad Sci USAGoogle Scholar
  101. Song Z, McCall K, Steller H (1997) DCP-1, a Drosophila cell death protease essential for development. Science 275(5299):536–540PubMedCrossRefPubMedCentralGoogle Scholar
  102. Stork NE (2018) How many species of insects and other terrestrial arthropods are there on earth? Annu Rev Entomol 63:31–45PubMedCrossRefPubMedCentralGoogle Scholar
  103. Stoven S, Silverman N, Junell A, Hedengren-Olcott M, Erturk D, Engstrom Y, Maniatis T, Hultmark D (2003) Caspase-mediated processing of the Drosophila NF-kappaB factor Relish. Proc Natl Acad Sci U S A 100(10):5991–5996PubMedPubMedCentralCrossRefGoogle Scholar
  104. Suganuma I, Ushiyama T, Yamada H, Iwamoto A, Kobayashi M, Ikeda M (2011) Cloning and characterization of a dronc homologue in the silkworm, Bombyx mori. Insect Biochem Mol Biol 41(11):909–921PubMedCrossRefPubMedCentralGoogle Scholar
  105. Tagu D, Calevro F, Colella S, Gabaldón T, Sugio A (2016) Functional and evolutionary genomics in aphids. In: Vilcinskas A (ed) Biology and ecology of aphids CRC Press, Taylor & Francis Group, pp 52–88Google Scholar
  106. Tambunan J, Kan Chang P, Li H, Natori M (1998) Molecular cloning of a cDNA encoding a silkworm protein that contains the conserved BH regions of Bcl-2 family proteins. Gene 212(2):287–293PubMedCrossRefPubMedCentralGoogle Scholar
  107. Tenev T, Zachariou A, Wilson R, Ditzel M, Meier P (2005) IAPs are functionally non-equivalent and regulate effector caspases through distinct mechanisms. Nat Cell Biol 7(1):70–77PubMedCrossRefPubMedCentralGoogle Scholar
  108. The International Aphid Genomics Consortium (2010) Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biol 8(2):e1000313PubMedCentralCrossRefGoogle Scholar
  109. Tsiatsiani L, Van Breusegem F, Gallois P, Zavialov A, Lam E, Bozhkov PV (2011) Metacaspases. Cell Death Differ 18(8):1279–1288PubMedPubMedCentralCrossRefGoogle Scholar
  110. Uren AG, Coulson EJ, Vaux DL (1998) Conservation of baculovirus inhibitor of apoptosis repeat proteins (BIRPs) in viruses, nematodes, vertebrates and yeasts. Trends Biochem Sci 23(5):159–162PubMedCrossRefPubMedCentralGoogle Scholar
  111. Vasudevan D, Ryoo HD (2015) Regulation of cell ceath by IAPs and their antagonists. Curr Top Dev Biol 114:185–208PubMedPubMedCentralCrossRefGoogle Scholar
  112. Verhagen AM, Vaux DL (2002) Cell death regulation by the mammalian IAP antagonist Diablo/Smac. Apoptosis 7(2):163–166PubMedCrossRefPubMedCentralGoogle Scholar
  113. Verhagen AM, Silke J, Ekert PG, Pakusch M, Kaufmann H, Connolly LM, Day CL, Tikoo A, Burke R, Wrobel C, Moritz RL, Simpson RJ, Vaux DL (2002) HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins. J Biol Chem 277(1):445–454PubMedCrossRefPubMedCentralGoogle Scholar
  114. Vigneron A, Masson F, Vallier A, Balmand S, Rey M, Vincent-Monégat C, Aksoy E, Aubailly-Giraud E, Zaidman-Rémy A, Heddi A (2014) Insects recycle endosymbionts when the benefit is over. Curr Biol 24(19):2267–2273PubMedCrossRefPubMedCentralGoogle Scholar
  115. Wang H, Clem RJ (2011) The role of IAP antagonist proteins in the core apoptosis pathway of the mosquito disease vector Aedes aegypti. Apoptosis 16(3):235–248PubMedPubMedCentralCrossRefGoogle Scholar
  116. Wang XR, Wang C, Wang XW, Qian LX, Chi Y, Liu SS, Liu YQ, Wang XW (2018) The functions of caspase in whitefly Bemisia tabaci apoptosis in response to ultraviolet irradiation. Insect Mol Biol 27(6):739–751PubMedCrossRefPubMedCentralGoogle Scholar
  117. Waterhouse RM, Kriventseva EV, Meister S, Xi Z, Alvarez KS, Bartholomay LC, Barillas-Mury C, Bian G, Blandin S, Christensen BM, Dong Y, Jiang H, Kanost MR, Koutsos AC, Levashina EA, Li J, Ligoxygakis P, Maccallum RM, Mayhew GF, Mendes A, Michel K, Osta MA, Paskewitz S, Shin SW, Vlachou D, Wang L, Wei W, Zheng L, Zou Z, Severson DW, Raikhel AS, Kafatos FC, Dimopoulos G, Zdobnov EM, Christophides GK (2007) Evolutionary dynamics of immune-related genes and pathways in disease-vector mosquitoes. Science 316(5832):1738–1743PubMedPubMedCentralCrossRefGoogle Scholar
  118. White K, Grether ME, Abrams JM, Young L, Farrell K, Steller H (1994) Genetic control of programmed cell death in Drosophila. Science 264(5159):677–683PubMedPubMedCentralCrossRefGoogle Scholar
  119. Wing JP, Zhou L, Schwartz LM, Nambu JR (1998) Distinct cell killing properties of the Drosophila reaper, head involution defective, and grim genes. Cell Death Differ 5(11):930–939PubMedCrossRefPubMedCentralGoogle Scholar
  120. Xu D, Li Y, Arcaro M, Lackey M, Bergmann A (2005) The CARD-carrying caspase Dronc is essential for most, but not all, developmental cell death in Drosophila. Development 132(9):2125–2134PubMedPubMedCentralCrossRefGoogle Scholar
  121. Xu D, Wang Y, Willecke R, Chen Z, Ding T, Bergmann A (2006) The effector caspases drICE and dcp-1 have partially overlapping functions in the apoptotic pathway in Drosophila. Cell Death Differ 13(10):1697–1706PubMedPubMedCentralCrossRefGoogle Scholar
  122. Xu D, Woodfield SE, Lee TV, Fan Y, Antonio C, Bergmann A (2009) Genetic control of programmed cell death (apoptosis) in Drosophila. Fly (Austin) 3(1):78–90CrossRefGoogle Scholar
  123. Yang D, Chai L, Wang J, Zhao X (2008) Molecular cloning and characterization of Hearm caspase-1 from Helicoverpa armigera. Mol Biol Rep 35(3):405–412PubMedCrossRefPubMedCentralGoogle Scholar
  124. Yang Z, Zhou K, Liu H, Wu A, Mei L, Liu Q (2016) SfDredd, a novel initiator caspase possessing activity on effector caspase substrates in Spodoptera frugiperda. PLoS ONE 11(3):e0151016PubMedPubMedCentralCrossRefGoogle Scholar
  125. Yi HS, Pan CX, Pan C, Song J, Hu YF, Wang L, Pan MH, Lu C (2014) BmICE-2 is a novel pro-apoptotic caspase involved in apoptosis in the silkworm, Bombyx mori. Biochem Biophys Res Commun 445(1):100–106PubMedCrossRefPubMedCentralGoogle Scholar
  126. Yoo SJ, Huh JR, Muro I, Yu H, Wang L, Wang SL, Feldman RM, Clem RJ, Muller HA, Hay BA (2002) Hid, Rpr and Grim negatively regulate DIAP1 levels through distinct mechanisms. Nat Cell Biol 4(6):416–424PubMedCrossRefPubMedCentralGoogle Scholar
  127. Yu SY, Yoo SJ, Yang L, Zapata C, Srinivasan A, Hay BA, Baker NE (2002) A pathway of signals regulating effector and initiator caspases in the developing Drosophila eye. Development 129(13):3269–3278PubMedPubMedCentralGoogle Scholar
  128. Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR (1993) The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 75(4):641–652CrossRefGoogle Scholar
  129. Zachariou A, Tenev T, Goyal L, Agapite J, Steller H, Meier P (2003) IAP-antagonists exhibit non-redundant modes of action through differential DIAP1 binding. EMBO J 22(24):6642–6652PubMedPubMedCentralCrossRefGoogle Scholar
  130. Zhang H, Huang Q, Ke N, Matsuyama S, Hammock B, Godzik A, Reed JC (2000) Drosophila pro-apoptotic Bcl-2/Bax homologue reveals evolutionary conservation of cell death mechanisms. J Biol Chem 275(35):27303–27306PubMedPubMedCentralGoogle Scholar
  131. Zhang JY, Pan MH, Sun ZY, Huang SJ, Yu ZS, Liu D, Zhao DH, Lu C (2010) The genomic underpinnings of apoptosis in the silkworm, Bombyx mori. BMC Genom 11:611CrossRefGoogle Scholar
  132. Zhou L, Jiang G, Chan G, Santos CP, Severson DW, Xiao L (2005) Michelob_x is the missing inhibitor of apoptosis protein antagonist in mosquito genomes. EMBO Rep 6(8):769–774PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Univ Lyon, INSA-Lyon, INRA, UMR0203, BF2I, F-69621VilleurbanneFrance
  2. 2.Department of Human Genetics, Laboratory of Behavioral and Developmental GeneticsKU LeuvenLeuvenBelgium

Personalised recommendations