Vertebrate Genome Size and the Impact of Transposable Elements in Genome Evolution

  • Maria A. BiscottiEmail author
  • Federica Carducci
  • Ettore Olmo
  • Adriana Canapa


In eukaryotes, the haploid DNA content (C-value) varies widely across lineages without an apparent correlation with the complexity of organisms. This incongruity has been called the C-value paradox and has been solved by demonstrating that not all DNA is constituted by genes but, on the contrary, most of it is made up of repetitive DNA. In vertebrates, the increasing number of sequenced genomes has shown that differences in genome size between lineages are ascribable to a variation in transposon content. These mobile elements, previously perceived as “junk DNA” or “selfish DNA,” are now recognized as the major players in shaping genomes. During vertebrate evolution, transposable elements have been repeatedly co-opted and exapted to generate regulatory sequences, coding exons, or entirely new genes that lead to evolutionary advantages for the host. Moreover, transposable elements are also responsible for substantial rearrangements such as insertions, deletions, inversions, and duplications potentially associated with, or following, speciation events.

List of Abbreviations and Acronyms


eukaryotic small cytoplasmic RNA


Arthrobacter luteus restriction endonuclease


Chicken Repeat 1






Insulin gene enhancer protein ISL-1








Long Interspersed Nuclear Elements


Long Terminal Repeat


Miniature Inverted-repeated Transposable Elements




ProopioMelanoCortin gene


Recombination-ActivatinG Protein 1


Recombination-ActivatinG Protein 2


Reverse Transcriptase


Satellite DNA


Short Interspersed Nuclear Elements


Short Interspersed Nuclear Elements-R, where R indicates a sequence of Retroviral origin


Single Nucleotide Polymorphisms


SET domain and Mariner transposase fusion gene




Transposable Elements


Terminal Inverted Repeat


UnTranslated Regions


Variable Diversity Joining


Variable Number of Tandem Repeats


  1. Adams RH, Blackmon H, Reyes-Velasco J et al (2016) Microsatellite landscape evolutionary dynamics across 450 million years of vertebrate genome evolution. Genome 59:295–310PubMedCrossRefGoogle Scholar
  2. Alföldi J, Di Palma F, Grabherr M et al (2011) The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature 477:587–591PubMedPubMedCentralCrossRefGoogle Scholar
  3. Allendorf FW, Thorgaard GH (1984) Tetraploidy and the evolution of salmonid fishes. In: Turner BJ (eds) Evolutionary genetics of fishes. Monographs in evolutionary biology. Springer, Boston, MAGoogle Scholar
  4. Amemiya CT, Alfoldi J, Lee AP et al (2013) The African coelacanth genome provides insight into tetrapod evolution. Nature 496:311–316PubMedPubMedCentralCrossRefGoogle Scholar
  5. Aparicio S, Chapman J, Stupka E et al (2002) Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297:1301–1310PubMedCrossRefGoogle Scholar
  6. Bejerano G, Lowe CB, Ahituv N et al (2006) A distal enhancer and an ultraconserved exon are derived from a novel retroposon. Nature 441:87–90PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bennett MD (1971) The duration of meiosis. Proc R Soc Lond B Biol Sci 178:259–275CrossRefGoogle Scholar
  8. Biemont (2010) A brief history of the status of transposable elements: from junk DNA to major players in evolution. Genetics 186:1085–1093PubMedPubMedCentralCrossRefGoogle Scholar
  9. Biscotti MA, Olmo E, Heslop-Harrison JS (2015a) Repetitive DNA in eukaryotic genomes. Chromosome Res 23:415–420PubMedCrossRefGoogle Scholar
  10. Biscotti MA, Canapa A, Forconi M, Olmo E, Barucca M (2015b) Transcription of tandemly repetitive DNA: functional roles. Chromosome Res 23:463–477PubMedCrossRefGoogle Scholar
  11. Biscotti MA, Gerdol M, Canapa A et al (2016) The lungfish transcriptome: a glimpse into molecular evolution events at the transition from water to land. Sci Rep 6:21571PubMedPubMedCentralCrossRefGoogle Scholar
  12. Biscotti MA, Canapa A, Forconi M et al (2017) The small noncoding RNA processing machinery of two living fossil species, lungfish and coelacanth, gives new insights into the evolution of the argonaute protein family. Genome Biol Evol 9:438–453PubMedCentralCrossRefPubMedGoogle Scholar
  13. Biscotti MA, Barucca M, Canapa A (2018) New insights into the genome repetitive fraction of the Antarctic bivalve Adamussium colbecki. PLoS ONE 13(3):e0194502PubMedPubMedCentralCrossRefGoogle Scholar
  14. Blaxter M (2010) Genetics. Revealing the dark matter of the genome. Science 330:1758–1759PubMedCrossRefGoogle Scholar
  15. Bonnivard E, Catrice O, Ravaux J et al (2009) Survey of genome size in 28 hydrothermal vent species covering 10 families. Genome 52:524–536PubMedCrossRefGoogle Scholar
  16. Bourque G, Burns KH, Gehring M et al (2018) Ten things you should know about transposable elements. Genome Biol 19:199PubMedPubMedCentralCrossRefGoogle Scholar
  17. Britten RJ, Graham DE, Neufeld BR (1974) Analysis of repeating DNA sequences by reassociation. Method Enzymol 29:363–405CrossRefGoogle Scholar
  18. Burton DW, Bickham JW, Genoways HH (1989) Flow-cytometric analyses of nuclear DNA content in four families of neotropical bats. Evolution 43:756–765PubMedCrossRefGoogle Scholar
  19. Canapa A, Barucca M, Biscotti MA et al (2015) Transposons, genome size, and evolutionary insights in animals. Cytogenet Genome Res 147:217–239PubMedCrossRefGoogle Scholar
  20. Carducci F, Barucca M, Canapa A et al (2018) Rex retroelements and teleost genomes: an overview. Int J Mol Sci 19:11CrossRefGoogle Scholar
  21. Casola C, Hucks D, Freschotte C et al (2008) Convergent domestication of pogo-like transposases into centromere-binding proteins in fission yeast and mammals. Mol Biol Evol 25:29–41PubMedCrossRefGoogle Scholar
  22. Castoe TA, de Konig AP, Hall KT et al (2013) The Burmese python genome reveals the molecular basis for extreme adaptation in snakes. Proc Natl Acad Sci USA 110:20645–20650PubMedCrossRefGoogle Scholar
  23. Castoe TA, Hall KT, Guibotsy Mboulas ML et al (2011) Discovery of highly divergent repeat landscapes in snake genomes using high-throughput sequencing. Genome Biol Evol 3:641–653PubMedPubMedCentralCrossRefGoogle Scholar
  24. Cavalier-Smith T (1978) Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. J Cell Sci 43:247–278Google Scholar
  25. Chalopin D, Naville M, Plard F et al (2015) Comparative analysis of transposable elements highlights mobilome diversity and evolution in vertebrates. Genome Biol Evol 7:567–580PubMedPubMedCentralCrossRefGoogle Scholar
  26. Chalopin D, Volff JN (2017) Analysis of the spotted gar genome suggests absence of causative link between ancestral genome duplication and transposable element diversification in teleost fish. J Exp Zool B Mol Dev Evol 328:629–637PubMedCrossRefGoogle Scholar
  27. Chaves R, Ferreira D, Mendes-da-Silva et al (2017) FA-SAT is an old satellite DNA frozen in several bilateria genomes. Genome Biol Evol 9:3073–3087PubMedPubMedCentralCrossRefGoogle Scholar
  28. Chuong EB, Rumi MAK, Soares MJ et al (2013) Endogenous retroviruses function as species-specific enhancer elements in the placenta. Nat Genet 45:325–329PubMedPubMedCentralCrossRefGoogle Scholar
  29. Cordaux R, Udit S, Batzer MA et al (2006) Birth of a chimeric primate gene by capture of the transposase gene from a mobile element. Proc Natl Acad Sci USA 103:8101–8106PubMedCrossRefGoogle Scholar
  30. de Boer JG, Yazawa R, Davidson WS et al (2007) Bursts and horizontal evolution of DNA transposons in the speciation of pseudotetraploid salmonids. BMC Genom 8:422CrossRefGoogle Scholar
  31. Doolittle WF, Sapienza C (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284:601–603PubMedCrossRefGoogle Scholar
  32. Dufresne F, Jeffery N (2011) A guided tour of large genome size in animals: what we know and where we are heading. Chromosome Res 19:925–938PubMedCrossRefGoogle Scholar
  33. Feschotte C, Swamy L, Wessler SR (2003) Genome-wide analysis of mariner-like transposable elements in rice reveals complex relationships with stowaway miniature inverted repeat transposable elements (MITEs). Genetics 163:747–758Google Scholar
  34. Forconi M, Chalopin D, Barucca M et al (2014) Transcriptional activity of transposable elements in coelacanth. J Exp Zool B Mol Dev Evol 322:379–389PubMedCrossRefGoogle Scholar
  35. Furano AV, Duvernell DD, Boissinot S (2004) L1 (LINE-1) retrotransposon diversity differs dramatically between mammals and fish. Trends Genet 20:9–14PubMedCrossRefGoogle Scholar
  36. Garrido-Ramos MA (2015) Satellite DNA in plants: more than just rubbish. Cytogenet Genome Res 146:153–170PubMedCrossRefGoogle Scholar
  37. Garrido-Ramos MA (2017) Satellite DNA: an evolving topic. Genes (Basel) 8(9)PubMedCentralCrossRefPubMedGoogle Scholar
  38. Girgis HZ (2015) Red: an intelligent, rapid, accurate tool for detecting repeats de-novo on the genomic scale. BMC Bioinf 16:227CrossRefGoogle Scholar
  39. Goerner-Potvin P, Bourque G (2018) Computational tools to unmask transposable elements. Nat Rev Genet 19:688–704PubMedCrossRefGoogle Scholar
  40. Green RE, Braun EL, Armstrong J et al (2014) Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs. Science 346:1254449PubMedPubMedCentralCrossRefGoogle Scholar
  41. Gregory TR (2019) Animal genome size database.
  42. Guizard S, Piégu B, Arensburger P et al (2016) Deep landscape update of dispersed and tandem repeats in the genome model of the red jungle fowl, Gallus gallus, using a series of de novo investigating tools. BMC Genom 17(1):659CrossRefGoogle Scholar
  43. Henke C, Strissel PL, Schubert MT et al (2015) Selective expression of sense and antisense transcripts of the sushi-ichi-related retrotransposon-derived family during mouse placentogenesis. Retrovirology 12:9PubMedPubMedCentralCrossRefGoogle Scholar
  44. Heslop-Harrison JS, Schwarzacher T (2011) Organisation of the plant genome in chromosomes. Plant J 66:18–33PubMedCrossRefGoogle Scholar
  45. Horie K, Saito ES, Keng VW et al (2007) Retrotransposons influence the mouse transcriptome: implication for the divergence of genetic traits. Genetics 176:815–827PubMedPubMedCentralCrossRefGoogle Scholar
  46. Hughes AL, Hughes MK (1995) Small genomes for better fliers. Nature 377:391PubMedCrossRefGoogle Scholar
  47. Kapitonov VV, Jurka J (2005) RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons. PLoS Biol 3:e181PubMedPubMedCentralCrossRefGoogle Scholar
  48. Kapitonov VV, Jurka J (2008) A universal classification of eukaryotic transposable elements implemented in Repbase. Nat Rev Genet 9:411–412PubMedCrossRefGoogle Scholar
  49. Kapranov P, Laurent GS (2012) Genomic ‘dark matter’: implications for understanding human disease mechanisms, diagnostics, and cures. Front Genet 3:95PubMedPubMedCentralGoogle Scholar
  50. Kraaijeveld K (2010) Genome size and species diversification. Evol Biol 37:227–233PubMedPubMedCentralCrossRefGoogle Scholar
  51. Kramerov DA, Vassetzky NS (2011) Origin and evolution of SINEs in eukaryotic genomes. Heredity 107:487–495PubMedPubMedCentralCrossRefGoogle Scholar
  52. Lerat E (2010) Identifying repeats and transposable elements in sequenced genomes: how to find your way through the dense forest of programs. Heredity 104:520–533PubMedCrossRefGoogle Scholar
  53. Levitsky VG, Babenko VN, Vershinin AV (2013) The roles of the monomer length and nucleotide context of plant tandem repeats in nucleosome positioning. J Biomol Struct Dyn 32:115–126PubMedCrossRefGoogle Scholar
  54. López-Flores I, Garrido-Ramos MA (2012) The repetitive DNA content of eukaryotic genomes. In: Garrido-Ramos MA (ed) Repetitive DNA. Genome Dyn 7:1–28Google Scholar
  55. Lynch M, Conery JS (2003) The origins of genome complexity. Science 302:1401–1404PubMedCrossRefGoogle Scholar
  56. Malik HS, Henikoff S, Eickbush TH (2000) Poised for contagion: evolutionary origins of the infectious abilities of invertebrate retroviruses. Genome Res 10:1307–1318PubMedCrossRefGoogle Scholar
  57. Malone CD, Hannon GJ (2009) Small RNAs as guardians of the genome. Cell 136:656–668PubMedPubMedCentralCrossRefGoogle Scholar
  58. Matzke MA, Matzke AJ (1998) Polyploidy and transposons. Trends Ecol Evol 13:241PubMedCrossRefGoogle Scholar
  59. Metcalfe CJ, Filée J, Germon I et al (2012) Evolution of the Australian lungfish (Neoceratodus forsteri) genome: a major role for CR60 and L2 LINE elements. Mol Biol Evol 29:3529–3539PubMedCrossRefGoogle Scholar
  60. Mravinac B, Plohl M, Ugarković D (2005) Preservation and high sequence conservation of satellite DNAs suggest functional constraints. J Mol Evol 61:542–550PubMedCrossRefGoogle Scholar
  61. Naville M, Warren IA, Haftek-Terreau Z et al (2016) Not so bad after all: retroviruses and long terminal repeat retrotransposons as a source of new genes in vertebrates. Clin Microbiol Infect 22:312–323PubMedCrossRefGoogle Scholar
  62. Nekrutenko A, Li WH (2001) Transposable elements are found in a large number of human protein-coding genes. Trends Genet 17:619–621PubMedCrossRefGoogle Scholar
  63. Nowoshilow S, Schloissnig S, Fei JF et al (2018) The axolotl genome and the evolution of key tissue formation regulators. Nature 554:50–55PubMedCrossRefGoogle Scholar
  64. Ohno S (1972) So much ‘junk’ DNA in our genome. In: Smith HH (ed) Evolution of genetic systems. Gordon and Breach, New YorkGoogle Scholar
  65. Olmo E (1983) Nucleotype and cell size in vertebrates: a review. Basic Appl Histochem 27:227–256PubMedGoogle Scholar
  66. Organ CL, Shedlock AM, Meade A et al (2007) Origin of avian genome size and structure in non-avian dinosaurs. Nature 446:180–184PubMedCrossRefGoogle Scholar
  67. Organ CL, Canoville A, Reisz RR et al (2011) Paleogenomic data suggest mammal-like genome size in the ancestral amniote and derived large genome size in amphibians. J Evol Biol 24:372–380PubMedCrossRefGoogle Scholar
  68. Pagán HJ, Macas J, Novák P et al (2012) Survey sequencing reveals elevated DNA transposon activity, novel elements, and variation in repetitive landscapes among vesper bats. Genome Biol Evol 4:575–585PubMedPubMedCentralCrossRefGoogle Scholar
  69. Pasquesi GIM, Adams RH, Card DC et al (2018) Squamate reptiles challenge paradigms of genomic repeat element evolution set by birds and mammals. Nat Commun 9:2774PubMedPubMedCentralCrossRefGoogle Scholar
  70. Peona V, Weissensteiner MH, Suh A (2018) How complete are “complete” genome assemblies?-An avian perspective. Mol Ecol Resour 18(6):1188–1195PubMedCrossRefGoogle Scholar
  71. Petraccioli A, Odierna G, Capriglione T et al (2015) A novel satellite DNA isolated in Pecten jacobaeus shows high sequence similarity among molluscs. Mol Genet Genomics 290:1717–1725PubMedCrossRefGoogle Scholar
  72. Petrov DA (2002) Mutational equilibrium model of genome size evolution. Theor Popul Biol 61:531–544PubMedCrossRefGoogle Scholar
  73. Piacentini L, Fanti L, Specchia V et al (2014) Transposons, environmental changes, and heritable induced phenotypic variability. Chromosoma 123:345–354PubMedPubMedCentralCrossRefGoogle Scholar
  74. Ray DA, Pagan HJ, Thompson ML et al (2007) Bats with hATs: evidence for recent DNA transposon activity in genus Myotis. Mol Biol Evol 24:632–639PubMedCrossRefGoogle Scholar
  75. Ribet D, Harper F, Esnault C et al (2008) The GLN family of murine endogenous retroviruses contains an element competent for infectious viral particle formation. J Virol 82:4413–4419PubMedPubMedCentralCrossRefGoogle Scholar
  76. Rebollo R, Horard B, Hubert B et al (2010) Jumping genes and epigenetics: towards new species. Gene 454:1–7PubMedCrossRefGoogle Scholar
  77. Santangelo AM, de Souza FSJ, Franchini LF et al (2007) Ancient exaptation of a CORE–SINE retroposon into a highly conserved mammalian neuronal enhancer of the proopiomelanocortin gene. PLoS Genet 3:1813–1826PubMedCrossRefGoogle Scholar
  78. Schatz DG, Swanson PC (2011) V(D)J recombination: mechanisms of initiation. Annu Rev Genet 45:167–202PubMedCrossRefGoogle Scholar
  79. Schueler MG, Higgins AW, Rudd MK, Gustashaw K, Willard HF (2001) Genomic and genetic definition of a functional human centromere. Science 294:109–115PubMedPubMedCentralCrossRefGoogle Scholar
  80. Sela N, Mersch B, Hotz-Wagenblatt A et al (2010) Characteristics of transposable element exonization within human and mouse. PLoS ONE 5:e10907PubMedPubMedCentralCrossRefGoogle Scholar
  81. Shaffer HB, Minx P, Warren DE et al (2013) The western painted turtle genome, a model for the evolution of extreme physiological adaptations in a slowly evolving lineage. Genome Biol 14:R28PubMedCrossRefGoogle Scholar
  82. Smith JJ, Kuraku S, Holt C et al (2013) Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution. Nat Genet 45:415–421PubMedPubMedCentralCrossRefGoogle Scholar
  83. Smith JJ, Timoshevskaya N, Ye C et al (2018) The sea lamprey germline genome provides insights into programmed genome rearrangement and vertebrate evolution. Nat Genet 50(2):270–277PubMedPubMedCentralCrossRefGoogle Scholar
  84. Sorek R (2007) The birth of new exons: mechanisms and evolutionary consequences. RNA 13:1603–1608PubMedPubMedCentralCrossRefGoogle Scholar
  85. Stapley J, Santure AW, Dennis SR (2015) Transposable elements as agents of rapid adaptation may explain the genetic paradox of invasive species. Mol Ecol 24:2241–2252PubMedCrossRefGoogle Scholar
  86. Su W, Gu X, Peterson T (2019) TIR-learner, a new ensemble method for TIR transposable element annotation, provides evidence for abundant new transposable elements in the maize genome. Mol Plant 12:447–460PubMedCrossRefGoogle Scholar
  87. Sun C, Lopez Arriaza JR, Mueller RL (2012) Slow DNA loss in the gigantic genomes of salamanders. Genome Biol Evol 4:1340–1348PubMedPubMedCentralCrossRefGoogle Scholar
  88. Sun YB, Xiong ZJ, Xiang XY et al (2015) Whole–genome sequence of the Tibetan frog Nanorana parkeri and the comparative evolution of tetrapod genome. Proc Natl Acad Sci USA 112:1257–1262CrossRefGoogle Scholar
  89. Swift H (1950) The constancy of desoxyribose nucleic acid in plant nuclei. Proc Natl Acad Sci USA 36:643–654PubMedCrossRefGoogle Scholar
  90. Tempel S (2012) Using and understanding RepeatMasker. Methods Mol Biol 859:29–51PubMedCrossRefGoogle Scholar
  91. Thomas CA Jr (1971) The genetic organization of chromosomes. Annu Rev Genet 5:237–256PubMedCrossRefGoogle Scholar
  92. Thornburg BG, Gotea V, Makalowski W (2006) Transposable elements as a significant source of transcription regulating signals. Gene 365:104–110PubMedCrossRefGoogle Scholar
  93. Van den Bussche RA, Longmire JL, Baker RJ (1995) How bats achieve a small C-value: frequency of repetitive DNA in Macrotus. Mamm Genome 6:521–525PubMedCrossRefGoogle Scholar
  94. van de Lagemaat LN, Landry JR, Mager DL et al (2003) Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genet 19:530–536PubMedCrossRefGoogle Scholar
  95. Vendrely R, Vendrely C (1948) La teneur du noyau cellulaire en acide désoxyribonucléique à travers les organes, les individus et les espèces animales: techniques et premiers résultats. Experientia 4:434–436PubMedCrossRefGoogle Scholar
  96. Venkatesh B, Lee AP, Ravi V et al (2014) Elephant shark genome provides unique insights into gnathostome evolution. Nature 505:174–179PubMedPubMedCentralCrossRefGoogle Scholar
  97. Vernochet C, Redelsperger F, Harper F et al (2014) The captured retroviral envelope syncytin-A and syncytin-B genes are conserved in the Spalacidae together with hemotrichorial placentation. Biol Reprod 91:148PubMedCrossRefGoogle Scholar
  98. Vinogradov AE (1995) Nucleotypic effect in homeotherms: body-mass-corrected basal metabolic rate of mammals is related to genome size. Evolution 49:1249–1259PubMedCrossRefGoogle Scholar
  99. Vinogradov AE (1997) Nucleotypic effect in homeotherms: body-mass independent resting metabolic rate of passerine birds is related to genome size. Evolution 51:220–225PubMedCrossRefGoogle Scholar
  100. Vinogradov AE (1998) Buffering: a possible passive-homeostasis role for redundant DNA. J Theor Biol 193:197–199PubMedCrossRefGoogle Scholar
  101. Vinogradov AE (2003) Selfish DNA is maladaptive: evidence from the plant red list. Trends Genet 19:609–614PubMedCrossRefGoogle Scholar
  102. Vinogradov AE (2004) Testing genome complexity. Science 304:389–390PubMedCrossRefGoogle Scholar
  103. Volff JN, Körting C, Froschauer A et al (2001) Non-LTR retrotransposons encoding a restriction enzyme-like endonuclease in vertebrates. J Mol Evol 52:351–360PubMedCrossRefGoogle Scholar
  104. Volff JN, Bouneau L, Ozouf-Costaz C et al (2003) Diversity of retrotransposable elements in compact pufferfish genomes. Trends Genet 19:674–678PubMedCrossRefGoogle Scholar
  105. Voss SR, Putta S, Walker JA et al (2013) Salamander Hox clusters contain repetitive DNA and expanded non-coding regions: a typical Hox structure for non-mammalian tetrapod vertebrates? Hum Genomics 7:9PubMedPubMedCentralCrossRefGoogle Scholar
  106. Wang Z, Pascual-Anaya J, Zadissa A et al (2013) The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle specific body plan. Nat Genet 45:701–706PubMedPubMedCentralCrossRefGoogle Scholar
  107. Warren IA, Naville M, Chalopin D et al (2015) Evolutionary impact of transposable elements on genomic diversity and lineage-specific innovation in vertebrates. Chromosome Res 23:505–531PubMedCrossRefGoogle Scholar
  108. Wicker T, Sabot F, Hua-Van A et al (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982PubMedCrossRefGoogle Scholar
  109. Wicker T, Robertson JS, Schulze SR et al (2005) The repetitive landscape of the chicken genome. Genome Res 15:126–136PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Maria A. Biscotti
    • 1
    Email author
  • Federica Carducci
    • 1
  • Ettore Olmo
    • 1
  • Adriana Canapa
    • 1
  1. 1.Dipartimento di Scienze della Vita e dell’AmbienteUniversità Politecnica delle MarcheAnconaItaly

Personalised recommendations