A Non-paradoxical Pathway for the Chemical Evolution Toward the Most Primitive RNA-Based Life-like System

  • Kunio KawamuraEmail author


Although the RNA world hypothesis is an important hypothesis for the origin-of-life study, it involves drawbacks that should be evaluated. These drawbacks involve unknown points. First, several steps from inorganic materials to the functional RNA molecules are not yet clarified. Second, the simulation experiments for the prebiotic accumulation of RNA seem to be incompatible with the Hadean Earth environments. Third, the actual feature of the RNA world has not been identified. Here, we carried out possible simulation experiments for the chemical evolution of RNA using our hydrothermal flow reactor systems. We recently proposed the two-gene hypothesis for the emergence of life-like systems from simple chemical networks. Following the same methodology, here, we attempted to combine the knowledge obtained from experimental data on the chemical evolution of RNA and the theoretical work to deduce a realistic feature of the RNA-based life-like system.



This study was supported by the Hiroshima Shudo University grant at 2017 and 2018, Aoba Foundation for the Promotion of Engineering 2012, the JSPS KAKENHI Grant JP15H01069 in 2015–2017, and the JSPS KAKENHI Grant JP15K12144 in 2015–2017, and the Bilateral Joint Research Projects/Seminars between the Japan Society for the Promotion of Science (JSPS) and the Centre National de la Recherche Scientifique (CNRS) in 2015–2017.


  1. Akanuma S, Nakajima Y, Yokoboria S, Kimura M, Nemoto N, Mase T, Miyazono K, Tanokura M, Yamagishia A (2013) Experimental evidence for the thermophilicity of ancestral life. Proc Natl Acad Sci USA 110:11067–11072PubMedCrossRefGoogle Scholar
  2. Blank JG, Miller GH, Ahrens MJ, Winans RE (2001) Experimental shock chemistry of aqueous amino acid solutions and the cometary delivery of prebiotic compounds. Orig Life Evol Biosphe 31:15–51CrossRefGoogle Scholar
  3. Boillot F, Chabin A, Buré C, Venet M, Belsky A, Bertrand-Urbaniak M, Delmas A, Brack A, Barbier B (2002) The perseus exobiology mission on MIR: behaviour of amino acids and peptides in Earth orbit. Orig Life Evol Biosph 32:359–385PubMedCrossRefGoogle Scholar
  4. Buick R, Thornett JR, Mcnaughton NJ, Smith JB, Barley ME, Savage M (1995) Record of emergent continental-crust similar-to-3.5 billion years ago in the Pilbara craton of Australia. Nature 375:574–577CrossRefGoogle Scholar
  5. Cech TR (1986) A model for the RNA-catalyzed replication of RNA. Proc Natl Acad Sci USA 83:4360–4363CrossRefGoogle Scholar
  6. Cech TR, Zaung AJ, Grabowski PJ (1981) In vitro splicing of the ribosomal RNA precousor of Tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell 27:487–496PubMedCrossRefGoogle Scholar
  7. Cleaves HJ, Aubrey AD, Bada JL (2009) An evaluation of the critical parameters for abiotic peptide synthesis in submarine hydrothermal systems. Orig Life Evol Biosph 39:109–126PubMedCrossRefGoogle Scholar
  8. Corliss JB, Baross JA, Hoffman SE (1981) An hypothesis concerning the relationship between submarine hot springs and the origin of life on Earth. Oceanol Acta 4:59–69Google Scholar
  9. Costanzo G, Saladino R, Crestini C, Ciciriello F, Di Mauro E (2007) Nucleoside phosphorylation by phosphate minerals. J Biol Chem 282:16729–16735PubMedCrossRefGoogle Scholar
  10. Costanzo G, Pino S, Ciciriello F, Di Mauro E (2009) Generation of long RNA chains in water. J Biol Chem 284:33206–33216PubMedPubMedCentralCrossRefGoogle Scholar
  11. Copley SD, Smith E, Morowitz HJ (2007) The origin of the RNA world: Co-evolution of genes and metabolism. Bioorg Chem 35:430–443PubMedCrossRefGoogle Scholar
  12. Cowan DA (2004) The upper temperature for life—where do we draw the line? Trends Microbiol 12(2):58–60. Scholar
  13. Crick F (1970) Central dogma of molecular biology. Nature 227:561–563CrossRefGoogle Scholar
  14. Crick FHC (1968) The origin of the genetic code. J Mol Biol 38:367–379PubMedCrossRefGoogle Scholar
  15. Da Silva L, Maurel M-C, Deamer D (2015) Salt-promoted synthesis of RNA-like molecules in simulated hydrothermal conditions. J Mol Evol 80:86–97PubMedCrossRefGoogle Scholar
  16. Eigen M (1971) Self-organization of matter and the evolution of biological macromolecules. Naturwissenschaften 65:7–41CrossRefGoogle Scholar
  17. Eigen M, Shuster O (1979) The hypercycle. A principle of natural self-organization. Part B: the abstract hypercycle. Naturwissenschaften 58:465–523CrossRefGoogle Scholar
  18. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822PubMedCrossRefGoogle Scholar
  19. El-Murr N, Maurel M-C, Rihova M, Vergne J, Hervé G, Kato M, Kawamura K (2012) Behavior of a hammerhead ribozyme in aqueous solution at medium to high temperatures. Naturwissenschaften 99:731–738PubMedCrossRefGoogle Scholar
  20. Ertem G, Ferris JP (1996) Synthesis of RNA oligomers on heterogeneous templates. Nature 379:238–240PubMedCrossRefGoogle Scholar
  21. Fakhrai H, Inoue T, Orgel LE (1984) Temperature-dependence of the template-directed synthesis of oligoguanylates. Tetrahedron 40(1):39–45PubMedCrossRefGoogle Scholar
  22. Ferris JP (2002) Montmorillonite catalysis of 30–50 mer oligonucleotides: laboratory demonstration of potential steps in the origin of the RNA world. Orig Life Evol Biosph 32:311–332PubMedCrossRefGoogle Scholar
  23. Ferris JP, Ertem G (1992) Oligomerization of ribonucleotides on montmorillonite: reaction of the 5′-phosphorimidazolide of adenosine. Science 257:1387–1389PubMedCrossRefGoogle Scholar
  24. Ferris JP, Sanchez RA, Orgel LE (1968) Studies in prebiotic synthesis: III. Synthesis of pyrimidines from cyanoacetylene and cyanate. J Mol Biol 33:693–704PubMedCrossRefGoogle Scholar
  25. Ferris JP, Hill AR, Liu JR, Orgel LE (1996) Synthesis of long prebiotic oligomers on mineral surfaces. Nature 381:59–61PubMedCrossRefGoogle Scholar
  26. Fuller WD, Sanchez RA, Orgel LE (1972a) Studies in prebiotic synthesis VI. Synthesis of purine nucleosides. J Mol Biol 67:25–33CrossRefGoogle Scholar
  27. Fuller WD, Sanchez RA, Orgel LE (1972b) Studies in prebiotic synthesis VII. Solid-state synthesis of purine nucleosides. J Mol Evol 1:249–257PubMedCrossRefGoogle Scholar
  28. Furukawa Y, Sekine T, Oba M, Kakegawa T, Nakazawa H (2009) Biomolecule formation by oceanic impacts on early Earth. Nat Geosci 2:62–66CrossRefGoogle Scholar
  29. Galtier N, Tourasse N, Gouy M (1999) A nonhyperthermophilic common ancestor to extant life forms. Science 283:220–221PubMedCrossRefGoogle Scholar
  30. Gilbert W (1986) Origin of life: the RNA world. Nature 319:618CrossRefGoogle Scholar
  31. Gontareva NB, Kuzicheva EA, Shelegedin VN (2009) Synthesis and characterization of peptides after high-energy impact on the icy matrix: Preliminary step for further UV-induced formation. Planet Space Sci 57:441–445CrossRefGoogle Scholar
  32. Gough DO (1981) Solar interior structure and luminosity variations. Solar Phys 74:21–34CrossRefGoogle Scholar
  33. Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S (1983) The RNA moiety of ribonuclease P is the catalytic sybuit of the enzyme. Cell 35:849–857PubMedCrossRefGoogle Scholar
  34. Harrison TM (2009) The Hadean Crust: Evidence from >4 Ga Zircons. Ann rev Earth Planet Sci 37:479–505CrossRefGoogle Scholar
  35. Harrison JP, Gheeraert N, Tsigelnitskiy D, Cockell CS (2013) The limits for life under multiple extremes. Trends Microbiol 21(4):204–212PubMedCrossRefGoogle Scholar
  36. Higgs PG, Lehman N (2015) The RNA World: molecular cooperation at the origins of life. Nat Rev Gene 16:7–17. Scholar
  37. Hill AR Jr, Orgel LE, Wu T (1993) The limits of template-directed synthesis with nucleoside-5′-phosphoro(2-methyl) imidazolides. Orig Life Evol Biosph 23:285–290PubMedCrossRefPubMedCentralGoogle Scholar
  38. Hogeweg P, Takeuchi N (2003) Multilevel selection in models of prebiotic evolution: compartments and spatial self-organization. Orig Life Evol Biosph 33:375–403PubMedCrossRefPubMedCentralGoogle Scholar
  39. Horning DP, Joyce GF (2016) Amplification of RNA by an RNA polymerase ribozyme. Proc Natl Acad Sci USA 113:9786–9791PubMedCrossRefPubMedCentralGoogle Scholar
  40. Ikehara K (2005) Possible steps to the emergence of life: the [GADV]-protein world hypothesis. Chem Rec 5:107–118PubMedCrossRefPubMedCentralGoogle Scholar
  41. Ikehara K (2009) Pseudo-replication of [GADV]-proteins and origin of life. Int J Mol Sci 10:1525–1537. Scholar
  42. Imai E, Honda H, Hatori K, Brack A, Matsuno K (1999a) Elongation of oligopeptides in a simulated submarine hydrothermal system. Science 283:831–833PubMedCrossRefPubMedCentralGoogle Scholar
  43. Imai E, Honda H, Hatori K, Matsuno K (1999b) Autocatalytic synthesis of oligoglycine in a simulated submarine hydrothermal system. Orig Life Evol Biosph 29:249–259PubMedCrossRefPubMedCentralGoogle Scholar
  44. Inoue T, Orgel LE (1982) Oligomerization of (guanosine 5′-phosphor)-2-methyl-imidazolide on poly(C), an RNA polymerase model. J Mol Biol 162:201–217PubMedCrossRefGoogle Scholar
  45. Inoue T, Orgel LE (1983) A nonenzymatic RNA polymerase model. Science 219:859–862PubMedCrossRefGoogle Scholar
  46. Islam MN, Kaneko T, Kobayashi K (2003) Reaction of amino acids in a Supercritical water-flow reactor simulating submarine hydrothermal systems. Bull Chem Soc Jpn 76:1171–1178CrossRefGoogle Scholar
  47. Johnston WK, Unrau PJ, Lawrence MS, Glasner ME, Bartel DP (2001) RNA-catalyzed RNA polymerization: accurate and general RNA-templated primer extension. Science 292:1319–1325PubMedCrossRefGoogle Scholar
  48. Joyce GF (2002) The antiquity of RNA based evolution. Nature 418:214–221PubMedCrossRefGoogle Scholar
  49. Joyce GF, Szostak JW (2018) Protocells and RNA self-replication. Cold Spring Harbor Per Biol 10(9):a034801. Scholar
  50. Joyce GF, Inoue T, Orgel LE (1984) Non-enzymatic template-directed synthesis on RNA random copolymers, poly(C, U) templates. J Mol Evol 176:278–306Google Scholar
  51. Kaiser RI, Stockton AM, Kim YS, Jensen EC, Mathies RA (2013) On the formation of dipeptides in interstellar model ices. Astrophys J 765:111. Scholar
  52. Kanavarioti A, Bernasconi CF, Alberas DJ, Baird EE (1993) Kinetic dissection of individual steps on the poly(c)-directed oligoguanylate synthesis from guanosine 5′-monophosphate 2-methylimidazolide. J Am Chem Soc 115(19):8537–8546PubMedCrossRefPubMedCentralGoogle Scholar
  53. Kasting JF (1993) Earth’s early atmosphere. Science 259:920–926PubMedCrossRefPubMedCentralGoogle Scholar
  54. Kauffman S (1986) Autocatalytic sets of proteins. J Theor Biol 119:1–24PubMedCrossRefPubMedCentralGoogle Scholar
  55. Kauffman S (2007) Question 1: origin of life and the living state. Orig Life Evol Biosph 37:315–322PubMedCrossRefPubMedCentralGoogle Scholar
  56. Kawamura K (1998) Kinetic analysis of hydrothermal reactions by flow tube reactor—hydrolysis of adenosine 5′-triphosphate at 398–573 K. Nippon Kagaku Kaishi 255–262Google Scholar
  57. Kawamura K (1999) Monitoring of hydrothermal reactions in 3 ms using fused-silica capillary tubing. Chem Lett 28:125–126CrossRefGoogle Scholar
  58. Kawamura K (2000) Monitoring hydrothermal reactions on the millisecond time scale using a micro-tube flow reactor and kinetics of ATP hydrolysis for the RNA world hypothesis. Bull Chem Soc Jpn 73:1805–1811CrossRefGoogle Scholar
  59. Kawamura K (2001) Hydrolytic stability of ribose phosphodiester bonds within several oligonucleotides at high temperatures using a real-time monitoring method for hydrothermal reactions. Chem Lett 30(11):1120–1121CrossRefGoogle Scholar
  60. Kawamura K (2002a) In situ UV-VIS detection of hydrothermal reactions using fused-silica capillary tubing within 0.08–3.2 s at high temperatures. Anal Sci 18:715–716PubMedCrossRefGoogle Scholar
  61. Kawamura K (2002b) The origin of life from the life of subjectivity. In: Palyi G, Zucchi C, Caglioti L (eds) Fundamentals of life. Elsevier, Paris, pp 563–574Google Scholar
  62. Kawamura K (2003a) Kinetics and activation parameter analyses of hydrolysis and interconversion of 2′,5′- and 3′,5′-linked dinucleoside monophosphate at extremely high temperatures. Biochim Biophys Acta 1620:199–210PubMedCrossRefGoogle Scholar
  63. Kawamura K (2003b) Kinetic analysis of cleavage of ribose phosphodiester bond within guanine and cytosine rich oligonucleotides and dinucleotides at 65–200 & °C and its implications on the chemical evolution of RNA. Bull Chem Soc Jpn 76:153–162CrossRefGoogle Scholar
  64. Kawamura K (2003c) The relative importance of genes, subjectivity, and self-organization for the origin and evolution of life. In: Levit GS, Popov IY, Hossfeld U, Breidbach O (eds) In the shadow of Darwinism: alternative evolutionary theories in the 20th century. Fineday-press, St-Petersburg, pp 218–239Google Scholar
  65. Kawamura K (2004) Behavior of RNA under hydrothermal conditions and the origins of life. Inter J Astrobiol 3:301–309CrossRefGoogle Scholar
  66. Kawamura K (2005) A new probe for the indirect measurement of the conformation and interaction of biopolymers at extremely high temperatures using a capillary flow hydrothermal reactor system for UV-visible spectrophotometry. Anal Chim Acta 543(1–2):236–241CrossRefGoogle Scholar
  67. Kawamura K (2007) Civilization as a biosystem examined by the comparative analysis of biosystems. BioSystems 90(1):139–150PubMedCrossRefGoogle Scholar
  68. Kawamura K (2010) Temperature limit for the emergence of life-like system deduced from the prebiotic chemical kinetics under the hydrothermal conditions. In: Fellermann H, Dörr M, Hanczyc MM, Lauren LL, Maurer S, Merkle D, Monnard P-A, Støy K, Rasmussen S (eds) Proceedings of the twelfth international conference on the simulation and synthesis of living systems, pp 37–44Google Scholar
  69. Kawamura K (2011) Development of micro-flow hydrothermal monitoring systems and their applications to the origin of life study on earth. Anal Sci 27(7):675–683PubMedCrossRefGoogle Scholar
  70. Kawamura K (2012a) Drawbacks of the ancient RNA-based life-like system under primitive earth conditions. Biochimie 94(7):1441–1450PubMedCrossRefGoogle Scholar
  71. Kawamura K (2012b) Reality of the emergence of life-like systems from simple prebiotic polymers on primitive earth. In: Seckbach J, Gordon R (eds) Genesis—in the beginning: precursors of life, chemical models and early biological evolution. Springer, Dordrecht, pp 123–144CrossRefGoogle Scholar
  72. Kawamura K (2016) A hypothesis: life initiated from two genes, as deduced from the RNA world hypothesis and the characteristics of life-like systems. Life 6(3):29PubMedCentralCrossRefPubMedGoogle Scholar
  73. Kawamura K (2017) Hydrothermal microflow technology as a research tool for origin-of-life studies in extreme Earth environments. Life 7(4):37PubMedCentralCrossRefPubMedGoogle Scholar
  74. Kawamura K, Ferris JP (1994) Kinetics and mechanistic analysis of dinucleotide and oligonucleotide formation from the 5′-phosphorimidazolide of adenosine on Na+-montmorillonite. J Am Chem Soc 116:7564–7572PubMedCrossRefGoogle Scholar
  75. Kawamura K, Umehara M (2001) Kinetic analysis of the temperature dependence of the template-directed formation of oligoguanylate from the 5′-phosphorimidazolide of guanosine on a poly(C) template with Zn2+. Bull Chem Soc Jpn 74(5):927–935CrossRefGoogle Scholar
  76. Kawamura K, Yukioka M (2001) Kinetics of the racemization of amino acids at 225–275 °C using a real-time monitoring method of hydrothermal reactions. Thermochim Acta 375:9–16CrossRefGoogle Scholar
  77. Kawamura K, Maeda J (2008) Kinetics and activation parameter analysis for the prebiotic oligocytidylate formation on Na+-montmorillonite at 0–100 °C. J Phys Chem A 112:8015–8023PubMedCrossRefGoogle Scholar
  78. Kawamura K, Shimahashi M (2008) One-step formation of oligopeptide-like molecules from Glu and Asp in hydrothermal environments. Naturwissenschaften 95(5):449–454PubMedCrossRefGoogle Scholar
  79. Kawamura K, Nagayoshi H (2007) Behavior of DNA under hydrothermal conditions with MgCl2 additive using an in situ UV-visible spectrophotometer. Thermochim Acta 466:63–68CrossRefGoogle Scholar
  80. Kawamura K, Maurel M-C (2017) Walking over 4 Gya: chemical evolution from photochemistry to mineral and organic chemistries leading to an RNA world. Orig Life Evol Biopsh 47:281–296CrossRefGoogle Scholar
  81. Kawamura K, Yosida A, Matumoto O (1997) Kinetic investigations for the hydrolysis of adenosine 5′-triphosphate at elevated temperatures: Prospects for the chemical evolution of RNA. Viva Origino 25(3):177–197Google Scholar
  82. Kawamura K, Kameyama N, Matumoto O (1999) Kinetics of hydrolysis of ribonucleotide polymers in aqueous solution at elevated temperatures: implications of chemical evolution of RNA and primitive ribonuclease. Viva Origino 27(2):107–118Google Scholar
  83. Kawamura K, Kuranoue K, Nagahama M (2004) Prebiotic inhibitory activity of protein-like molecules to the template-directed formation of oligoguanylate from guanosine 5′-monophosphate 2-methylimidazolide on a polycytidylic acid template. Bull Chem Soc Jpn 77(7):1367–1375CrossRefGoogle Scholar
  84. Kawamura K, Nagahama M, Kuranoue K (2005a) Chemical evolution of RNA under hydrothermal conditions and the role of thermal copolymers of amino acids for the prebiotic degradation and formation of RNA. Adv Space Res 35(9):1626–1633PubMedCrossRefGoogle Scholar
  85. Kawamura K, Nishi T, Sakiyama T (2005b) Consecutive elongation of alanine oligopeptides at the second time range under hydrothermal condition using a micro flow reactor system. J Am Chem Soc 127(2):522–523PubMedCrossRefGoogle Scholar
  86. Kawamura K, Nagayoshi H, Yao T (2009) Stability of ribonuclease a under hydrothermal conditions in relation to the origin-of-life hypothesis: verification with the hydrothermal micro-flow reactor system. Res Chem Intermed 35:879–891CrossRefGoogle Scholar
  87. Kawamura K, Nagayoshi H, Yao T (2010) In situ analysis of proteins at high temperatures mediated by capillary-flow hydrothermal UV-Vis spectrophotometer with a water-soluble chromogenic reagent. Anal Chim Acta 667:88–95PubMedCrossRefGoogle Scholar
  88. Kawamura K, Takeya H, Kushibe T, Koizumi Y (2011) Mineral-enhanced hydrothermal oligopeptide formation at the second time scale. Astrobiology 11(5):461–469PubMedCrossRefGoogle Scholar
  89. Kawamura K, Yasuda T, Hatanaka T, Hamahiga K, Matsuda N, Ueshima M Nakai K (2016) Oxidation of aliphatic alcohols and benzyl alcohol by H2O2 under the hydrothermal conditions in the presence of solid-state catalysts using batch and flow reactors. Chem Eng J 285:49–56CrossRefGoogle Scholar
  90. Kawamura K, Yasuda T, Hatanaka T, Hamahiga K, Matsuda N, Ueshima M Nakai K (2017) In situ UV-VIS spectrophotometry within the second time scale as a research tool for solid-state catalyst and liquid-phase reactions at high temperatures: Its application to the formation of HMF from glucose and cellulose. Chem Eng J 307:1066–1075CrossRefGoogle Scholar
  91. Kawamura K, Konagaya N, Maruoka Y (2018) Enhancement and inhibitory activities of minerals for alanine oligopeptide elongation under hydrothermal conditions. Astrobiology 18(11):1403–1413PubMedCrossRefGoogle Scholar
  92. Kim YE, Higgs PG (2016) Co-operation between polymerases and nucleotide synthetases in the RNA World. Plos Comp Biol 12(11):e1005161. Scholar
  93. Landweber LF (1999) Testing ancient RNA–protein interactions. Proc Natl Acad Sci USA 96:11067–11068PubMedCrossRefGoogle Scholar
  94. Larralde R, Robertson MP, Miller SL (1995) Rates of decomposition of ribose and other sugars: implications for chemical evolution. Proc Natl Acad Sci USA 92:8158–8160CrossRefGoogle Scholar
  95. Lee DH, Severin K, Yokobayashi Y, Ghadiri MR (1997) Emergence of symbiosis in peptide self-replication through a hypercyclic network. Nature 390:591–594PubMedCrossRefGoogle Scholar
  96. Lohrmann R (1977) Formation of nucleoside 5′-phosphorimidates under potentially prebiological conditions. J Mol Evol 10:137–154PubMedCrossRefGoogle Scholar
  97. Lohrmann R, Orgel LE (1973) Prebiotic activation processes. Nature 244:418–420PubMedCrossRefGoogle Scholar
  98. Martins A, Price MC, Goldman N, Sephton MA, Burchell MJ (2013) Shock synthesis of amino acids from impacting cometary and icy planet surface analogues. Nat Geosci 6:1045–1049CrossRefGoogle Scholar
  99. Maruyama S, Ikoma M, Genda H, Hirose K, Yokoyama T, Santosh M (2013) The naked planet earth: most essential pre-requisite for the origin and evolution of life. Geosci Front 4:141–165CrossRefGoogle Scholar
  100. Maury CPJ (2009) Self-propagating β-sheet polypeptide structures as prebiotic informational molecular entities: the amyloid world. Orig Life Evol Biosph 39:141–150PubMedCrossRefGoogle Scholar
  101. Miller SL (1953) A production of amino acids under possible primitive Earth conditions. Science 117:528–529CrossRefPubMedGoogle Scholar
  102. Mojzsis SJ, Arrhenius G, McKeegan KD, Harrison TM, Nutman AP, Friend CRL (1996) Evidence for life on Earth before 3,800 million years ago. Nature 384:55–59PubMedCrossRefGoogle Scholar
  103. Mojzsis SJ, Harrison TM, Pidgeon RT (2001) Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4,300 Myr ago. Nature 409:178–181PubMedCrossRefGoogle Scholar
  104. Nagafuchi K, Nagira A, Akiyama H, Sasaki M, Kawamura K (2013) Oligopeptide production from alanine monomer by pulsed corona discharge plasma in ambient and supercritical argon. Chem Eng Sci 1(3):41–45. Scholar
  105. Nemoto N, Husimi Y (1995) A model of the virus-type strategy in the early stage of encoded molecular evolution. J Theor Biol 176:67–77PubMedCrossRefGoogle Scholar
  106. Nemoto N, Miyamoto-Sato E, Husimi Y, Yanagawa H (1997) In vitro virus: bonding of mRNA bearing puromycine at the 30-terminal end to the C-terminal end of its encoded protein on the ribosome in vitro. FEBS Lett 414:405–408PubMedCrossRefGoogle Scholar
  107. Neveu M, Kim H-J, Benner SA (2013) The “Strong” RNA world hypothesis: fifty years old. Astrobiology 13(4):391–403PubMedCrossRefGoogle Scholar
  108. Nghe P, Hordijk W, Kauffman SA, Walker SI, Schmidt FJ, Kemble H, Yeates JAM, Lehman N (2015) Prebiotic network evolution: six key parameters. Mol BioSys 11:3206–3217. Scholar
  109. Nutman AP, Friend CRL, Bennett VC (2001) Review of the oldest (4400–3600 Ma) geological and mineralogical record: glimpses of the beginning. Episode 24:93–101CrossRefGoogle Scholar
  110. Nutman AP, Bennet VC, Friend CRL, Van Kranendonk M, Chivas AR (2016) Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature 537:535–538PubMedCrossRefGoogle Scholar
  111. Oparin AI (1924) Proiskhozhdenie zhizni. Moscow Izd. Moskovskii Rabochii, RussiaGoogle Scholar
  112. Orgel LE (2004) Prebiotic chemistry and the origin of the RNA world. Crit Rev Biochem Mol Biol 39:99–123CrossRefGoogle Scholar
  113. Orgel LE, Crick FH (1993) Anticipating an RNA world. Some past speculations on the origin of life: where are they today? FEBS J 7:238–239Google Scholar
  114. Orgel LE, Lohrmann R (1974) Prebiotic chemistry and nucleic acid replication. Acc Chem Res 7:368–377CrossRefGoogle Scholar
  115. Oró J (1961) Mechanism of synthesis of adenine from hydrogen cyanide under possible primitive earth conditions. Nature 191:1193–1194PubMedCrossRefGoogle Scholar
  116. Otake T, Taniguchi T, Furukawa Y, Kawamura F, Nakazawa H, Kakegawa T (2011) Stability of amino acids and their oligomerization under high-pressure conditions: implications for prebiotic chemistry. Astrobiolgy 11:799–813CrossRefGoogle Scholar
  117. Pace NR (1991) Origin of life—facing up to the physical setting. Cell 65:531–533PubMedCrossRefGoogle Scholar
  118. Pasteur L (1861) Mémeoire sur les corpuscules organisés qui existent dans l’atmospère. Examen de la adoctrine des générations spontenées (tran: in Japanese (1970), Yamaguchi S (translated)). Iwanami Bunko, TokyoGoogle Scholar
  119. Pikuta EV, Hoover RB, Tang J (2007) Microbial extremophiles at the limits of life. Cri Rev Microbiol 33(3):183–209. Scholar
  120. Ponnamperuma C, Mack R (1965) Nucleotide synthesis under possible primitive earth conditions. Science 148:1221–1223PubMedCrossRefGoogle Scholar
  121. Radzicka A, Wolfenden R (1995) A proficient enzyme. Science 267:90–93PubMedCrossRefGoogle Scholar
  122. Reimann E, Zubay G (1999) Nucleoside phosphorylation: a feasible step in the prebiotic pathway to RNA. Orig Life Evol Biosph 29:229–247PubMedCrossRefGoogle Scholar
  123. Ricardo A, Carrigan MA, Olcott AN, Benner SA (2004) Borate mineral stabilize ribose. Science 303:196CrossRefGoogle Scholar
  124. Saladino R, Botta G, Pino S, Costanzoc G, Di Mauro E (2012) Genetics first or metabolism first? The formamide clue. Chem Soc Rev 41:5526–5565PubMedCrossRefGoogle Scholar
  125. Sanchez RA, Ferris JP, Orgel LE (1966) Cyanoacetylene on prebiotic synthesis. Science 154:784–785CrossRefGoogle Scholar
  126. Santosha M, Arai T, Maruyama S (2017) Hadean earth and primordial continents: The cradle of prebiotic life. Geosci Front 8:309–327CrossRefGoogle Scholar
  127. Sawai H (1976) Catalysis of internucleotide bond formation by divalent metal ions. J Am Chem Soc 98:7037–7039PubMedCrossRefGoogle Scholar
  128. Sawai H, Kuroda K, Hojo H (1989) Uranyl ion as a highly effective catalyst for internucleotide bond formation. Bull Chem Soc Jpn 62:2018–2023CrossRefGoogle Scholar
  129. Sawai H, Shibata T, Ohno M (1981) Preparation of oligoadenylares with 20-50 linkage using Pb2+ ion catalyst. Tetrahedron 37:481–485CrossRefGoogle Scholar
  130. Schildkraut C, Lifson S (1965) Dependence of the melting temperature of DNA on salt concentration. Biopolymers 3(2):195–208PubMedCrossRefGoogle Scholar
  131. Schwartman DW, Lineweaver CH (2004) The hyperthermophilic origin of life revisited. Biochem Soc Trans 32:168–171CrossRefGoogle Scholar
  132. Shapiro R (1988) Prebiotic ribose synthesis: a critical analysis. Orig Life Evol Biosph 18:71–85PubMedCrossRefGoogle Scholar
  133. Sleep NH (2018) Geological and geochemical constraints on the origin and evolution of life. Astrobiol 18:1199–1219CrossRefGoogle Scholar
  134. Stüeken EE, Anderson RE, Bowman JS, Brazelton WJ, Colangelo-Lillis J, Goldman AD, Som SM, Baross JA (2013) Did life originate from a global chemical reactor? Geobiol 11:101–126CrossRefGoogle Scholar
  135. Szostak N, Wasik S, Blazewicz J (2016) Hypercycle. Plos Comp Biol 12(4):e1004853. Scholar
  136. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510PubMedPubMedCentralCrossRefGoogle Scholar
  137. Vaidya N, Manapat ML, Chen IA, Xulvi-Brunet R, Hayden EJ, Lehman N (2012) Spontaneous network formation among cooperative RNA replicators. Nature 491:72–78PubMedCrossRefPubMedCentralGoogle Scholar
  138. van Zuilen MA, Lepland A, Arrhenius G (2002) Reassessing the evidence for the earliest traces of life. Nature 418:627–630PubMedCrossRefPubMedCentralGoogle Scholar
  139. Vasas V, Fernando C, Santos M, Kauffman S, Szathmáry E (2012) Evolution before genes. Biol Dire 7:1. Scholar
  140. Waehneldt TV, Fox SW (1967) Phosphorylation of nucleosides with poly-phosphoric acid. Biochim Biophys Acta 134:1–8CrossRefGoogle Scholar
  141. Watson JD, Crick FHC (1953) Molecular structure of nucleic acids. Nature 171:737–738CrossRefPubMedGoogle Scholar
  142. Wetmur JG, Davidson N (1968) Kinetics of renaturation of DNA. J Mol Biol 31:349–370PubMedCrossRefGoogle Scholar
  143. White RH (1984) Hydrolytic stability of biomolecules at high temperatures and its implication for life at 250 °C. Nature 310:430–432PubMedCrossRefGoogle Scholar
  144. Wu M, Higgs PG (2009) Origin of self-replicating biopolymers: autocatalytic feedback can jump-start the RNA world. J Mol Biol 69:541–554Google Scholar
  145. Yamagata Y, Watanabe H, Namba T (1992) Volcanic production of polyphosphates and its relevance to prebiotic evolution. Nature 352:516–519CrossRefGoogle Scholar
  146. Yao S, Ghosh I, Zutshi R, Chmielewski J (1998) Selective amplification by auto- and cross-catalysis in a replicating peptide system. Nature 396:447–450PubMedCrossRefGoogle Scholar
  147. Zaher HS, Unrau PJ (2007) Selection of an improved RNA polymerase ribozyme with superior extension and fidelity. RNA 13:1017–1026PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Human Environmental StudiesHiroshima Shudo UniversityHiroshimaJapan

Personalised recommendations