Skip to main content

Coupled Problems in Thermodynamics

  • Chapter
  • First Online:
State of the Art and Future Trends in Material Modeling

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 100))

Abstract

We consider three basic methods adopted in modern thermodynamics. We discuss the state of the art, current problems and development prospects. We also discuss the possibility and necessity of constructing mechanical models of thermal processes and models of other processes of “non-mechanical nature”. Next, we consider one of the possible mechanical models of thermal and electromagnetic processes. In order to illustrate the consequences of this model, we analyze the mutual influence of thermal and electromagnetic waves at the interface between two materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ananth P, Dinesh A, Sugunamma V, Sandeep N (2015) Effect of nonlinear thermal radiation on stagnation flow of a casson fluid towards a stretching sheet. Ind Eng Lett 5(8):70–79

    Google Scholar 

  • Babenkov MB, Ivanova EA (2014) Analysis of the wave propagation processes in heat transfer problems of the hyperbolic type. Continuum Mech Thermodyn 26(4):483–502

    Google Scholar 

  • Babenkov MB, Vitokhin EY (2018) Thermoelastic waves in a medium with heat-flux relaxation. In: Altenbach, H and Öchsner, A (ed) Encyclopedia of Continuum Mechanics, Springer, Berlin, Heidelberg

    Google Scholar 

  • Baik C, Lavine AS (1995) On hyperbolic heat conduction equation and the second law of thermody- namics. Trans ASME J Heat Transf 117:256 – 263

    Google Scholar 

  • Bardeen J, Cooper LN, Schrieffer JR (1957) Micromorphic theory of superconductivity. The Phys Rev 106(1):162–164

    Google Scholar 

  • Barletta A, Zanchini E (1997) Hyperbolic heat conduction and local equilibrium: A second law analysis. Int J Heat Mass Transf 40(5):1007 – 1016

    CAS  Google Scholar 

  • Biot MA (1970) Variational Principles in Heat Transfer: A Unified Lagrangian Analysis of Dissipative Phenomena. Oxford Mathematical Monographs, Clarendon Press, Oxford

    Google Scholar 

  • Biot MA (1984) New variational-Lagrangian irreversible thermodynamics with application to viscous flow, reaction–diffusion, and solid mechanics. Advances in Applied Mechanics 24:1 – 91

    Google Scholar 

  • Boltzmann L (1974) Theoretical Physics and Philosophical Problems: Selected Writings. D. Reidel Publishing Company, Boston

    Google Scholar 

  • Campo A (1982) Estimate of the transient conduction of heat in materials with linear thermal properties based on the solution for constant properties. Heat and Mass Transf 17(1):1–9

    Google Scholar 

  • Čápek V, Sheehan DP (2005) Challenges to the Second Law of Thermodynamics. Theory and Experiment. Springer

    Google Scholar 

  • Cataneo C (1958) A form of heat conduction equation which eliminates the paradox of instantaneous propagation. Compte Rendus 247:431–433

    Google Scholar 

  • Chaibi M, Fernández T, Mimouni A, Rodriguez-Tellez J, Tazón A, Mediavilla A (2012) Nonlinear modeling of trapping and thermal effects on GaAs and GaN MESFET/HEMT devices. Progr Electromagn Res 124:163–186

    Google Scholar 

  • Chandrasekharaiah DS (1998) Hyperbolic thermoelasticity: A review of recent literature. Appl Mech Rev 51:705–729

    Google Scholar 

  • De Groot SR (1951) Thermodynamics of Irreversible Processes. North Holland, Amsterdam

    Google Scholar 

  • Dixon RC, Eringen AC (1964) A dynamical theory of polar elastic dielectrics — I. Int J Engng Sci 2:359–377

    Google Scholar 

  • Dixon RC, Eringen AC (1965) A dynamical theory of polar elastic dielectrics — II. Int J Engng Sci 3:379–398

    Google Scholar 

  • Dugdale JS (1996) Entropy and its Physical Meaning. Taylor & Francis, London

    Google Scholar 

  • Duhem P (1954) The Aim and Structure of Physical Theory. Princeton Univercity Press, Princeton, New Jersey

    Google Scholar 

  • Ebadian A, Darania P (2008) Study of exact solutions of nonlinear heat equations. Comput Appl Math 27(2):107–121

    Google Scholar 

  • Eisenschitz R (1958) Statistical Theory of Irreversible Processes. Oxford University Press, London

    Google Scholar 

  • Eringen AC (2003) Continuum theory of micromorphic electromagnetic thermoelastic solids. Int J Engng Sci 41:653–665

    Google Scholar 

  • Eringen AC, Maugin GA (1990) Electrodynamics of Continua. Springer–Verlag, New York

    Google Scholar 

  • Feynman RP, Leighton RB, Sands M (1963) The Feynman Lectures on Physics. Mainly Mechanics, Radiation, and Heat, vol 1. Addison Wesley Publishing Company, London

    Google Scholar 

  • Fomethe A, Maugin GA (1996) Material forces in thermoelastic ferromagnets. Continuum Mech Thermodyn 8:275–292

    Google Scholar 

  • Fong E, Lam TT, Davis SE (2010) Nonlinear heat conduction in isotropic and orthotropic materials with laser heat source. J Thermophys Heat Transf 24(1):104–111

    CAS  Google Scholar 

  • Galeş C, Ghiba ID, Ignătescu I (2011) Asymptotic partition of energy in micromorphic thermopiezo-electricity. Journal of Thermal Stresses 34:1241–1249

    Google Scholar 

  • Gay-Balmaz F, Yoshimura H (2019) From Lagrangian mechanics to nonequilibrium thermodynamics: A variational perspective. Entropy 21(1), doi:https://doi.org/10.3390/e21010008, 8

    Google Scholar 

  • Grekova E, Zhilin P (2001) Basic equations of Kelvin’s medium and analogy with ferromagnets. Journal of Elasticity 64:29–70

    Google Scholar 

  • Grekova EF (2001) Ferromagnets and Kelvin’s medium: Basic equations and wave processes. Journal of Computational Acoustics 9(2):427–446

    Google Scholar 

  • Grudinin I, Lee H, Chen T, Vahala K (2011) Compensation of thermal nonlinearity effect in optical resonators. Opt Express 19(8):7365–7372

    Google Scholar 

  • Habibi M, Oloumi M, Hosseinkhani H, Magidi S (2015) Numerical investigation into the highly nonlinear heat transfer equation with Bremsstrahlung emission in the inertial confinement fusion plasmas. Contrib Plasma Phys 55(9):677–684

    CAS  Google Scholar 

  • Huang C, Fan J, Zhu L (2012) Dynamic nonlinear thermal optical effects in coupled ring resonators. AIP Adv 2(032131):1–8

    Google Scholar 

  • Huang K (1963) Statistical Mechanics. John Wiley and Sons, New York

    Google Scholar 

  • Ignaczak J, Ostoja-Starzewski M (2009) Thermoelasticity with Finite Wave Speeds. Oxford Science Publications, Oxford

    Google Scholar 

  • Ivanova EA (2010) Derivation of theory of thermoviscoelasticity by means of two-component medium. Acta Mech 215:261–286

    Google Scholar 

  • Ivanova EA (2011) On one model of generalized continuum and its thermodynamical interpretation. In: Altenbach H, Maugin GA, Erofeev V (eds) Mechanics of Generalized Continua, Springer, Berlin, Heidelberg, Advanced Structured Materials, vol 7, pp 151–174

    Google Scholar 

  • Ivanova EA (2012) Derivation of theory of thermoviscoelasticity by means of two-component Cosserat continuum. Tech Mech 32:273–286

    Google Scholar 

  • Ivanova EA (2014) Description of mechanism of thermal conduction and internal damping by means of two-component Cosserat continuum. Acta Mech 225:757–795

    Google Scholar 

  • Ivanova EA (2015) A new model of a micropolar continuum and some electromagnetic analogies. Acta Mech 226:697–721

    Google Scholar 

  • Ivanova EA (2017) Description of nonlinear thermal effects by means of a two-component Cosserat continuum. Acta Mech 228:2299–2346

    Google Scholar 

  • Ivanova EA (2018) Thermal effects by means of two-component cosserat continuum. In: Altenbach H, Öchsner A (eds) Encyclopedia of Continuum Mechanics, Springer, Berlin, pp 1–12

    Google Scholar 

  • Ivanova EA (2019a) On micropolar continuum approach to some problems of thermo- and electrodynamics. Acta Mech 230:1685–1715

    Google Scholar 

  • Ivanova EA (2019b) Towards micropolar continuum theory describing some problems of thermo- and electrodynamics. In: Altenbach H, Irschik H, Metveenko V (eds) Contributions to Advanced Dynamics and Continuum Mechanics, Springer, Cham, Advanced Structured Materials, vol 114, pp 1–19

    Google Scholar 

  • Ivanova EA, Kolpakov YE (2013) Piezoeffect in polar materials using moment theory. J Appl Mech Tech Phys 54(6):989–1002

    CAS  Google Scholar 

  • Ivanova EA, Kolpakov YE (2016) A description of piezoelectric effect in non-polar materials taking into account the quadrupole moments. Z Angew Math Mech 96(9):1033–1048

    Google Scholar 

  • Jordan A, Khaldi S, Benmouna M, Borucki A (1987) Study of non-linear heat transfer problems. Revue de Physique Appliqueé 22(1):101–105

    CAS  Google Scholar 

  • Jou D, Casas-Vazquez J, Lebon G (2001) Extended Irreversible Thermodynamics. Springer, Berlin

    Google Scholar 

  • Khandekar C, Pick A, Johnson SG, Rodriguez AW (2015) Radiative heat transfer in nonlinear Kerr media. Phys Rev B 91(115406):1–9

    Google Scholar 

  • Kittel C (1970) Thermal Physics. John Wiley and Sons, New York

    Google Scholar 

  • Kondepudi D, Prigogine I (1998) Modern Thermodynamics: From Heat Engines to Dissipative Structures. Wiley, Chichester

    Google Scholar 

  • Krylov NS (2003) Works on the Substantiation of Statistical Physics (in Russ.). Editorial URSS, Moscow

    Google Scholar 

  • Kubo R (1965) Statistical Mechanics. Elsevier Science Publishers B.V., Amsterdam

    Google Scholar 

  • Lebon G, Casas-Vazquez J (1974) Lagrangian formulation of unsteady non-linear heat transfer problems. J Enging Math 8(1):31 – 44

    Google Scholar 

  • Lebon G, Dauby PC (1990) Heat transport in dielectric crystals at low temperature: a variational formulation based on extended irreversible thermodynamics. Phys Rev A 42:4710 – 4715

    CAS  Google Scholar 

  • LeMesurier B (2008) Modeling thermal effects on nonlinear wave motion in biopolymers by a stochastic discrete nonlinear Schrödinger equation with phase damping. Discrete and Contin Dyn Syst S 1(2):317–327

    Google Scholar 

  • Lieb EH, Yngvason J (1997) A guide to entropy and the second law of thermodynamics. Notices of the AMS (May):571 – 581

    Google Scholar 

  • Markides CN, Osuolale A, Solanki R, Stan GBV (2013) Nonlinear heat transfer processes in a two-phase thermofluidic oscillator. Appl Energy 104:958–977

    Google Scholar 

  • Maugin GA (1988) Continuum Mechanics of Electromagnetic Solids. Elsevier Science Publishers, Oxford

    Google Scholar 

  • Mottaghy D, Rath V (2006) Latent heat effects in subsurface heat transport modeling and their impact on palaeotemperature reconstructions. Geophys J Int 164:236–245

    Google Scholar 

  • Müller I (2007) A History of Thermodynamics. The Doctrine of Energy and Entropy. Springer, Berlin, Heidelberg, doi:https://doi.org/10.1007/978-3-540-46227-9

  • Ostoja-Starzewski M (2016) Second law violations, continuum mechanics, and permeability. Continuum Mechanics and Thermodynamics 28(1-2):489–501, doi:https://doi.org/10.1007/s00161-015-0451-4

    Google Scholar 

  • Ostoja-Starzewski M (2017) Admitting spontaneous violations of the second law in continuum thermomechanics. Entropy 19(78):1–10, doi:https://doi.org/10.3390/e19020078

    Google Scholar 

  • Polyanin AD, Zhurov AI, Vyaz’min AV (2000) Exact solutions of nonlinear heat- and mass-transfer equations. Theor Found of Chem Eng 34(5):403–415

    CAS  Google Scholar 

  • Prigogine I (1955) Introduction to Thermodynamics of Irreversible Processes. Charles C. Thomas Publishers, Springfield

    Google Scholar 

  • Reif F (1967) Berkeley Physics Course, vol 5. Statistical Physics. McGraw-Hill Book Company, New York

    Google Scholar 

  • Röpke G (2013) Nonequilibrium Statistical Physics. Wiley-VCH, Weinheim

    Google Scholar 

  • Rubin MB (1992) Hyperbolic heat conduction and the second law. Int J Eng Sci 30(11):1665 – 1676

    Google Scholar 

  • Ruelle D (1978) Thermodynamic Formalism. The Mathematical Structures of Classical Equilibrium Statistical Mechanics. Addison-Wesley Publishing Company, London

    Google Scholar 

  • Shliomis MI, Stepanov VI (1993) Rotational viscosity of magnetic fluids: contribution of the Brownian and Néel relaxational processes. J Magnetism Magnetic Mat 122:196–199

    CAS  Google Scholar 

  • Straughan B (2011) Heat Waves, Applied Mathematical Sciences, vol 177. Springer, New York

    Google Scholar 

  • Tiersten HF (1964) Coupled magnetomechanical equations for magnetically saturated insulators. J Math Phys 5(9):1298–1318

    Google Scholar 

  • Treugolov IG (1989) Moment theory of electromagnetic effects in anisotropic solids. Journal of Applied Mathematics and Mechanics 53(6):786–790

    Google Scholar 

  • Vitokhin EY, Ivanova EA (2017) Dispersion relations for the hyperbolic thermal conductivity, thermoelasticity and thermoviscoelasticity. Continuum Mech Thermodyn 29(6):1219–1240

    CAS  Google Scholar 

  • Zanchini E (1999) Hyperbolic heat conduction theories and nondecreasing entropy. Phys Rev B Condens Matter Mater Phys 60(2):991 — 997

    CAS  Google Scholar 

  • Zhilin PA (2006a) Advanced Problems in Mechanics, vol 2. Institute for Problems in Mechanical Engineering, St. Petersburg

    Google Scholar 

  • Zhilin PA (2006b) Advanced Problems in Mechanics (In Russ.), vol 1. Institute for Problems in Mechanical Engineering, St. Petersburg

    Google Scholar 

  • Zhilin PA (2012) Rational Continuum Mechanics (in Russ.). Polytechnic University Publishing House, St. Petersburg

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena A. Ivanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ivanova, E.A., Matias, D.V. (2019). Coupled Problems in Thermodynamics. In: Altenbach, H., Öchsner, A. (eds) State of the Art and Future Trends in Material Modeling . Advanced Structured Materials, vol 100. Springer, Cham. https://doi.org/10.1007/978-3-030-30355-6_7

Download citation

Publish with us

Policies and ethics