Skip to main content

On Micropolar Theory with Inertia Production

  • Chapter
  • First Online:

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 100))

Abstract

This paper presents a new aspect in generalized continuum theory, namely micropolar media showing structural change. Initially the necessary theoretical framework for a micropolar continuum is presented. To this end the standard macroscopic equations for mass and linear and angular momentum are complemented by a recently proposed balance equation for the moment of inertia tensor containing a production term. The new balance and, in particular, the production is interpreted mesoscopically by taking the inner structure of micropolar media into account. Various of examples for the term are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aero EL, Kuvshinskii EV (1961) Fundamental equations of the theory of elastic media with rotationally interacting particles. Soviet Physics - Solid State 2(7):1272–1281

    Google Scholar 

  • Altenbach H, Eremeyev VA (eds) (2012) Generalized Continua - From the Theory to Engineering Applications, CISM International Centre for Mechanical Sciences, vol 541. Springer, Wien

    Google Scholar 

  • Altenbach H, Forest S (eds) (2016) Generalized Continua as Models for Classical and Advanced Materials, Advanced Structured Materials, vol 42. Springer, Switzerland

    Google Scholar 

  • Altenbach H, Maugin GA, Erofeev V (eds) (2011) Mechanics of Generalized Continua, Advanced Structured Materials, vol 7. Springer, Berlin

    Google Scholar 

  • de Borst R (1993) A generalization of J2-flow theory for polar continua. Computer Methods in Applied Mechanics and Engineering 103(3):347–362

    Google Scholar 

  • Chen K (2007) Microcontinuum balance equations revisited: The mesoscopic approach. Journal of Non-Equilibrium Thermodynamics 32:435–458

    Google Scholar 

  • Cosserat F, Cosserat E (1909) Théorie des corps déformables. A. Hermann et fils

    Google Scholar 

  • Dłuzewski PH (1993) Finite deformations of polar elastic media. International Journal of Solids and Structures 30(16):2277–2285

    Google Scholar 

  • Dyszłewicz J (2004) Micropolar Theory of Elasticity. Springer Science, Berlin

    Google Scholar 

  • Ehlers W, Ramm E, Diebels S, D’Addetta G (2003) From particle ensembles to Cosserat continua: homogenization of contact forces towards stresses and couple stresses. International Journal of Solids and Structures 40:6681–6702

    Google Scholar 

  • Ericksen JL (1960a) Anisotropic fluids. Archive for Rational Mechanics and Analysis 4:231–237

    Google Scholar 

  • Ericksen JL (1960b) Theory of anisotropic fluids. Transactions of the Society of Rheology 4:29–39

    CAS  Google Scholar 

  • Ericksen JL (1960c) Transversely isotropic fluids. Kolloid-Zeitschrift 173:117–122

    Google Scholar 

  • Ericksen JL (1961) Conservation laws for liquid crystals. Transactions of the Society of Rheology 5:23–34

    CAS  Google Scholar 

  • Ericksen JL, Truesdell C (1957) Exact theory of stress and strain in rods and shells. Archive for Rational Mechanics and Analysis 1:295–323

    Google Scholar 

  • Eringen AC (1969) Micropolar fluids with stretch. International Journal of Engineering Science 7:115–127

    Google Scholar 

  • Eringen AC (1976) Continuum Physics, vol IV. Academic Press, New York

    Google Scholar 

  • Eringen AC (1984) A continuum theory of rigid suspensions. International Journal of Engineering Science 22:1373–1388

    CAS  Google Scholar 

  • Eringen AC (1985) Rigid suspensions in viscous fluid. International Journal of Engineering Science 23:491–495

    Google Scholar 

  • Eringen AC (1991) Continuum theory of dense rigid suspensions. Rheologica Acta 30:23–32

    CAS  Google Scholar 

  • Eringen AC (1997) A unified continuum theory of electrodynamics of liquid crystals. International Journal of Engineering Science 35(12/13):1137–1157

    CAS  Google Scholar 

  • Eringen AC (1999) Microcontinuum Field Theory, vol I: Foundations and Solids. Springer, New York

    Google Scholar 

  • Eringen AC (2001) Microcontinuum Field Theories, vol II: Fluent Media. Springer, New York

    Google Scholar 

  • Eringen AC, Kafadar CB (1976) Polar field theories. In: Continuum physics IV. Academic Press, London

    Google Scholar 

  • Eringen AC, Suhubi ES (1964a) Nonlinear theory of simple microelastic solids. International Journal of Engineering Science 2:189–203

    Google Scholar 

  • Eringen AC, Suhubi ES (1964b) Nonlinear theory of simple microelastic solids. International Journal of Engineering Science 2:389–404

    Google Scholar 

  • Fomicheva M, Vilchevskaya E, Müller W, Bessonov N (2019) Milling matter in a crusher: modeling based on extended micropolar theory. Continuum Mechanics and Thermodynamics https://doi.org/10.1007/s00161-019-00772-4

    Google Scholar 

  • Forest S, Sievert R (2003) Elastoviscoplastic constitutive frameworks for generalized continua. Acta Mechanica 160(1-2):71–111

    Google Scholar 

  • Forest S, Sievert R (2006) Nonlinear microstrain theories. International Journal of Solids and Structures 43(24):7224–7245

    Google Scholar 

  • Grammenoudis P, Tsakmakis C (2005) Predictions of microtorsional experiments by micropolar plasticity. Proceedings of the Royal Society A Mathematical Physical and Engineering Sciences 461(2053):189–205

    Google Scholar 

  • Grioli G (1960) Elasticita asimmetrica. Annali di Matematica Pura ed Applicata 50(1):389–417

    Google Scholar 

  • Günther W (1958) Zur Statik und Kinematik des Cosseratschen Kontinuums. Abhandlungen der Königlichen Gesellschaft der Wissenschaften in Göttingen 10:196–213

    Google Scholar 

  • Hamilton EL (1971) Elastic properties of marine sediments. Journal of Geophysical Research 76(2):579–604

    Google Scholar 

  • Hellinger E (1914) Die allgemeinen Ansätze der Mechanik der Kontinua. In: Klein F, Wagner K (eds) Encykl. Math. Wiss., Springer, Berlin, pp 602–694

    Google Scholar 

  • Ivanova E, Vilchevskaya E, Müller WH (2016) Time derivatives in material and spatial description – What are the differences and why do they concern us? In: Naumenko K, Aßmus M (eds) Advanced Methods of Mechanics for Materials and Structures, Springer, Advanced Structured Materials, vol 60, pp 3–28

    Google Scholar 

  • Ivanova EA, Vilchevskaya EN (2016) Micropolar continuum in spatial description. Continuum Mechanics and Thermodynamics 28(6):1759–1780

    CAS  Google Scholar 

  • Jeong J, Neff P (2010) Existence, uniqueness and stability in linear cosserat elasticity for weakest curvature conditions. Mathematics and Mechanics of Solids 15(1):78–95

    Google Scholar 

  • Kestelman VN, Pinchuk LS, Goldade VA (2013) Electrets in engineering: fundamentals and applications. Springer Science & Business

    Google Scholar 

  • Media Kröner E (1963) On the physical reality of torque stresses in continuum mechanics. International Journal of Engineering Science 1(2):261–278

    Google Scholar 

  • Larsson R, Diebels S (2007) A second-order homogenization procedure for multi-scale analysis based on micropolar kinematics. International Journal for Numerical Methods in Engineering 69(12):2485–2512

    Google Scholar 

  • Larsson R, Zhang Y (2007) Homogenization of microsystem interconnects based on micropolar theory and discontinuous kinematics. Journal of the Mechanics and Physics of Solids 55(4):819–841

    Google Scholar 

  • Lippmann H (1969) Eine Cosserat-Theorie des plastischen Fließens. Acta Mechanica 8(3-4):93–113

    Google Scholar 

  • Loret B, Simões FMF (2005) A framework for deformation, generalized diffusion, mass transfer and growth in multi-species multi-phase biological tissues. European Journal of Mechanics A/Solids 24:757–781

    Google Scholar 

  • Mandadapu KK, Abali BE, Papadopoulos P (2018) On the polar nature and invariance properties of a thermomechanical theory for continuum-on-continuum homogenization. arXiv preprint arXiv:180802540

  • Maugin GA (1998) On the structure of the theory of polar elasticity. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences 356(1741):1367–1395

    CAS  Google Scholar 

  • Maugin GA, Metrikine AV (eds) (2010) Mechanics of Generalized Continua: One Hundred Years After the Cosserats, Advances in Mechanics and Mathematics, vol 21. Springer, New York

    Google Scholar 

  • Mindlin RD (1964) Micro-structure in linear elasticity. Archive for Rational Mechanics and Analysis 16(1):51–78

    Google Scholar 

  • Mindlin RD, Tiersten HF (1962) Effects of couple–stresses in linear elasticity. Archive for Rational Mechanics and Analysis 11:415–448

    Google Scholar 

  • Morozova AN, Vilchevskaya EN, Müller WH, BessonovNM(2019) Interrelation of heat propagation and angular velocity in micropolar media. In: Altenbach H, Belyaev A, Eremeyev V, Krivtsov A, A P (eds) Dynamical Processes in Generalized Continua and Structures, Springer, Cham, Advanced Structured Materials, vol 103, pp 413 –425

    Google Scholar 

  • Müller WH, Vilchevskaya EN, Weiss W (2017) A meso-mechanics approach to micropolar theory: A farewell to material description. Physical Mesomechanics 20(3):13–24

    Google Scholar 

  • Neff P (2006) A finite-strain elastic-plastic Cosserat theory for polycrystals with grain rotations. International Journal of Engineering Science 44:574–594

    Google Scholar 

  • Neff P, Jeong J (2009) A new paradigm: the linear isotropic cosserat model with conformally invariant curvature energy. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 89(2):107–122

    Google Scholar 

  • Nistor I (2002) Variational principles for cosserat bodies. International Journal of Non-Linear Mechanics 37:565–569

    Google Scholar 

  • Oevel W, Schröter J (1981) Balance equation for micromorphic materials. Journal of Statistical Physics 25(4):645–662

    Google Scholar 

  • Palmov VA (1964) Fundamental equations of the theory of asymmetric elasticity. Journal of Applied Mathematics and Mechanics 28(3):496–505

    Google Scholar 

  • Pietraszkiewicz W, Eremeyev VA (2009) On natural strain measures of the non-linear micropolar continuum. International journal of solids and structures 49(3-4):774–787

    Google Scholar 

  • Ramezani S, Naghdabadi R (2007) Energy pairs in the micropolar continuum. International Journal of Solids and Structures 44(14-15):4810–4818

    Google Scholar 

  • Rivlin RS (1968) The formulation of theories in generalized continuum mechanics and their physical significance. Symposia Mathematica 1:357–373

    Google Scholar 

  • Sansour C, Skatulla S (eds) (2012) Generalized Continua and Dislocation Theory. Springer

    Google Scholar 

  • van der Sluis O, Vosbeek PHJ, Schreurs PJG, Meijer HEH (1999) Homogenization of heterogeneous polymers. International Journal of Solids and Structures 36(21):3193–3214

    Google Scholar 

  • Steinmann P (1994) A micropolar theory of finite deformation and finite rotation multiplicative elastoplasticity. International Journal of Solids and Structures 31(8):1063–1084

    Google Scholar 

  • Steinmann P, Stein E (1997) A uniform treatment of variational principles for two types of micropolar continua. Acta Mechanica 121:215–232

    Google Scholar 

  • Stojanovic R, Djuriic S, Vujo˘seviic L (1964) On finite thermal deformations. Archiwum Mechaniki Stosowanej 16:102–108

    Google Scholar 

  • Toupin RA (1962) Elastic materials with couple–stresses. Archives for Rational Mechanics and Analysis 11:385–414

    Google Scholar 

  • Toupin RA (1964) Theories of elasticity with couple-stress. Archives for Rational Mechanics and Analysis 17:85–112

    Google Scholar 

  • Truesdell C, Toupin RA (1960) The classical field theories. In: Flügge S (ed) Encyclopedia of Physics / Handbuch der Physik, Springer, Berlin, Heidelberg, vol III/1: Principles of Classical Mechanics and Field Theory / Prinzipien der Klassischen Mechanik und Feldtheorie, pp 226–858

    Google Scholar 

  • VoigtW(1887) Theoretische Studien über die Elasticitätsverhältnisse der Krystalle. I. Abhandlungen der Königlichen Gesellschaft der Wissenschaften in Göttingen 34:3–52

    Google Scholar 

  • Wilmanski K (2008) Continuum Thermodynamics. Part I: Foundations. WorldScientific, Singapore

    Google Scholar 

  • Zhilin PA (2012) Rational Continuum Mechanics (in Russ.). St. Petersburg Polytechnical University, St. Petersburg

    Google Scholar 

Download references

Acknowledgements

The author is deeply grateful to E.A. Ivanova and W.H. Müller for useful discussions on the subject.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Vilchevskaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vilchevskaya, E. (2019). On Micropolar Theory with Inertia Production. In: Altenbach, H., Öchsner, A. (eds) State of the Art and Future Trends in Material Modeling . Advanced Structured Materials, vol 100. Springer, Cham. https://doi.org/10.1007/978-3-030-30355-6_18

Download citation

Publish with us

Policies and ethics