Skip to main content

Extreme Yield Figures for Universal Strength Criteria

  • Chapter
  • First Online:
State of the Art and Future Trends in Material Modeling

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 100))

Abstract

We propose a universal, generally applicable yield criterion that describes a single convex surface in principal stress space encompassing extreme yield figures as convexity limits. The novel criterion is derived phenomenologically exploiting geometrical properties of yield surfaces in principal stress space. It is systematically compared with known yield criteria using different forms of visualization. Using a I1 - substitution the criterion is applicable to materials with pressure-sensitive behavior and contains well-known strength criteria. Introducing appropriate parameter restrictions, it can be applied for the modeling of ductile and brittle material behavior. The implementation of the present criterion eliminates the necessity of choosing a specific yield criterion for a particular material. The proposed criterion allows for excellent approximation of experimental data. It is applied to measured data of concrete and provides better accuracy than existing criteria from literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altenbach H, Kolupaev VA (2014) Classical and non-classical failure criteria. In: Altenbach H, Sadowski T (eds) Failure and Damage Analysis of Advanced Materials, Springer, Wien, Int. Centre for Mechanical Sciences CISM, Courses and Lectures Vol. 560, pp 1–66

    Google Scholar 

  • Altenbach H, Altenbach J, Zolochevsky A (1995) Erweiterte Deformationsmodelle und Versagenskriterien der Werkstoffmechanik. Deutscher Verlag für Grundstoffindustrie, Stuttgart

    Google Scholar 

  • Altenbach H, Bolchoun A, Kolupaev VA (2014) Phenomenological yield and failure criteria. In: Altenbach H, Öchsner A (eds) Plasticity of Pressure-Sensitive Materials, Springer, Berlin Heidelberg, Engineering Materials, pp 49–152

    Google Scholar 

  • Aubertin M, Li L, Simon R (2000) A multiaxial stress criterion for short- and long-term strength of isotropic rock media. Int J of Rock Mechanics and Mining Sciences 37(8):1169–1193

    Article  Google Scholar 

  • Balandin PP (1937) On the strength hypotheses (in Russ.: K voprosu o gipotezakh prochnosti). Vestnik inzhenerov i tekhnikov 1:19–24

    Google Scholar 

  • Bellman RE, Cooke KL, Lockett JA (1970) Algorithms, Graphs and Computers. Academic Press, New York

    Google Scholar 

  • Benvenuto E (1991) An Introduction to the History of Structural Mechanics. Springer, New York

    Book  Google Scholar 

  • Betten J (1979) Über die Konvexität von Fließkörpern isotroper und anisotroper Stoffe. Acta Mech 32:233–247

    Google Scholar 

  • Betten J (2001) Kontinuumsmechanik, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Bigoni D, Piccolroaz A (2004) Yield criteria for quasibrittle and frictional materials. Int J of Solids and Structures 41(11):2855–2878

    Article  Google Scholar 

  • Billington EW (1986) Introduction to the Mechanics and Physics of Solids. Adam Hilger Ltd., Bristol

    Google Scholar 

  • Bolchoun A, Kolupaev VA, Altenbach H (2011) Convex and non-convex yield surfaces (in German: Konvexe und nichtkonvexe Fließflächen). Forschung im Ingenieurwesen 75(2):73–92

    Article  Google Scholar 

  • de Borst R, Crifield MA, Remmers JJC, Verhoosel CV (2012) Nonlinear finite element analysis of solids and structures. Wiley, Chichester

    Google Scholar 

  • Boswell LF, Chen Z (1987) A general failure criterion for plain concrete. Int J of Solids and Structures 23(5):621–630

    Article  Google Scholar 

  • Botkin AI (1940a) Equilibrium of granular and brittle materials (in Russ.: O ravnovesii sypuchikh i khrupkikh materialov). Transactions of the Scientific Research Institute of Hydrotechnics, Izvestija NIIG, Leningrad 28:189–211

    Google Scholar 

  • Botkin AI (1940b) Theories of elastic failure of gramelar and of brittle materials (in Russ.: O prochnosti sypuchikh i khrupkikh materialov). Transactions of the Scientific Research Institute of Hydrotechnics, Izvestija NIIG, Leningrad 26:205–236

    Google Scholar 

  • Brencich A, Gambarotta L (2001) Isotropic damage model with different tensile–compressive response for brittle materials. Int J of Solids and Structures 38(34):5865–5892

    Article  Google Scholar 

  • Brünig M, Michalski A (2017) A stress-state-dependent continuum damage model for concrete based on irreversible thermodynamics. Int J of Plasticity 90:31–43

    Article  Google Scholar 

  • Burzyński W (1928) Study on Material Effort Hypotheses, (in Polish: Studjum nad Hipotezami Wytężenia). Akademia Nauk Technicznych, Lwów

    Google Scholar 

  • Capurso M (1967) Yield conditions for incompressible isotropic and orthotropic materials with different yield stress in tension and compression. Meccanica 2(2):118–125

    Article  Google Scholar 

  • Chen WF (1975) Limit Analysis and Soil Plasticity. Elsevier, Amsterdam

    Google Scholar 

  • Chen WF (2007) Plasticity in Reinforced Concrete. J. Ross Publishing, Plantation

    Google Scholar 

  • Chen WF, Han DJ (1988) Plasticity for Structural Engineers. Springer, New York

    Book  Google Scholar 

  • Chen WF, Han DJ (2007) Plasticity for Structural Engineers. J. Ross Publishing, New York

    Google Scholar 

  • Chen WF, Saleeb AF (1982) Elasticity and Modeling. Elsevier, Amsterdam

    Google Scholar 

  • Chen WF, Zhang H (1991) Structural Plasticity - Theory, Problems, and CAE Software. Springer, New York

    Chapter  Google Scholar 

  • Cicala P (1961) Presentazione geometrica delle relazioni fondamentali d’elastoplasticità. Giornale del Genio Civile 99:125–137

    Google Scholar 

  • Comi C (2001) A non-local model with tension and compression damage mechanisms. European J of Mechanics-A/Solids 20(1):1–22

    Article  Google Scholar 

  • Coulomb CA (1776) Essai sur une application des regles des maximis et minimis a quelques problemes de statique relatifs, a la architecture. Mem Acad Roy Div Sav 7:343–387

    Google Scholar 

  • Cuntze RG (2017) Fracture failure bodies of porous concrete (foam-like), normal concrete, ultra- high-performance-concrete and of the lamella sheet – generated on basis of Cuntze’s Failure- Mode-Concept (FMC). In: NAFEMS World Congress NWC, 11-14 June 2017, Stockholm, pp 1–13

    Google Scholar 

  • Donida G, Mentrasti L (1982) A linear failure criterion for concrete under multiaxial states of stress. Int J of Fracture 19(1):53–66

    Google Scholar 

  • Drucker DC, Prager W (1952) Soil mechanics and plastic analysis or limit design. Quarterly of Appl Mathematics 10:157–165

    Article  Google Scholar 

  • Fahlbusch NC (2015) Entwicklung und Analyse mikromechanischer Modelle zur Beschreibung des Effektivverhaltens von geschlossenzelligen Polymerschäumen. Diss., Fachbereich Maschinenbau der Technischen Universität Darmstadt, Darmstadt

    Google Scholar 

  • Fan SC, Wang F (2002) A new strength criterion for concrete. ACI Structural Journal 99-S33(3):317–326

    Google Scholar 

  • Filonenko-Borodich MM (1960) Theory of Elasticity. P. Noordhoff W. N., Groningen

    Google Scholar 

  • Folino P, Etse G (2011) Validation of performance-dependent failure criterion for concretes, Title no. 108–M28. ACI Materials Journal 108(3):261–269

    Google Scholar 

  • François M (2008) A new yield criterion for the concrete materials. Comptes Rendus Mécanique 336(5):417–421

    Article  Google Scholar 

  • Hayhurst DR (1972) Creep rupture under multi-axial states of stress. J of the Mechanics and Physics of Solids 20(6):381–390

    Article  Google Scholar 

  • Haythornthwaite RM (1961) Range of yield condition in ideal plasticity. Proc ASCE J Eng Mech Division EM6 87:117–133

    Google Scholar 

  • Haythornthwaite RM (1962) Range of yield condition in ideal plasticity. Transactions ASCE 127(1):1252–1269

    Google Scholar 

  • Hinchberger SD (2009) Simple single-surface failure criterion for concrete. J of Eng Mechanics 135(7):729–732

    Article  Google Scholar 

  • Hsieh SS, Ting EC, Chen WF (1979) An elastic-fracture model for concrete. In: Proceedings, Third Engineering Mechanics Division Specialty Conference, September 17-19, 1979, American Society of Civil Engineers, Engineering Mechanics Division, University of Texas at Austin, pp 437–440

    Google Scholar 

  • Hsieh SS, Ting EC, Chen WF (1980) A plastic-fracture model for concrete. In: Hsieh SS, Ting EC (eds) Fracture in Concrete, Proceedings of a session sponsored by the Committee on Properties of Materials of the ASCE Engineering Mechanics Division at the ASCE National Convention in Hollywood, Florida, October 27-31, 1980, American Society of Civil Engineers, New York, pp 50–64

    Google Scholar 

  • Hsieh SS, Ting EC, Chen WF (1982) A plastic-fracture model for concrete. Int J of Solids and Structures 18(3):181–197

    Article  Google Scholar 

  • Huber MT (1904) Specific strain work as a measurment of material effort (in Polish: Właściwa praca odkształcenia jako miara wytężenia materyału). Czasopismo Techniczne 22:34–40, 49–50, 61–62, 80–81

    Google Scholar 

  • Ishlinsky AY (1940) Hypothesis of strength of shape change (in Russ.: Gipoteza prochnosti formoizmeneniya). Uchebnye Zapiski Moskovskogo Universiteta, Mekhanika 46:104–114

    Google Scholar 

  • Ivlev DD (1959) The theory of fracture of solids (in Russ.: K teorii razrusheniya tverdykh tel). J of Applied Mathematics and Mechanics 23(3):884–895

    Article  Google Scholar 

  • Ivlev DD (1960) On extremum properties of plasticity conditions (in Russ.: Ob ekstremal’nykh svoistvakh uslovij plastichnosti). J of Applied Mathematics and Mechanics 24(5):1439–1446

    Article  Google Scholar 

  • Koca M, Koca NO (2011) Quasi regular polygons and their duals with Coxeter symmetries Dn represented by complex numbers. In: J. of Physics: Conference Series, Group 28: Physical and Mathematical Aspects of Symmetry, IOP Publishing, vol 284, pp 1–10

    Google Scholar 

  • Kolupaev VA (2017) Generalized strength criteria as functions of the stress angle. J of Eng Mechanics 143(9), doi:10.1061/(ASCE)EM.1943-7889.0001322

    Article  Google Scholar 

  • Kolupaev VA (2018) Equivalent Stress Concept for Limit State Analysis. Springer, Cham

    Chapter  Google Scholar 

  • Kolupaev VA, Becker W, Massow H, Dierkes D (2014) Design of test specimens from hard foams for the investigation of biaxial tensile strength (in German: Auslegung von Probekörpern aus Hartschaum zur Ermittlung der biaxialen Zugfestigkeit). Forschung im Ingenieurwesen 78(3-4):69–86

    Article  CAS  Google Scholar 

  • Kolupaev VA, Yu MH, Altenbach H (2016) Fitting of the strength hypotheses. Acta Mechanica 227(2):1533–1556

    Article  Google Scholar 

  • Kolupaev VA, Yu MH, Altenbach H, Bolchoun A (2018) Comparison of strength criteria based on the measurements on concrete. J of Eng Mechanics 144(6), doi:10.1061/(ASCE)EM.1943-7889.0001419

    Article  Google Scholar 

  • Kupfer H (1973) Das Verhalten des Betons unter mehrachsiger Kurzzeitbelastung unter besonderer Berücksichtigung der zweiachsigen Beanspruchung, Ernst & Sohn, Berlin, pp 1–105. Deutscher Ausschuss für Stahlbeton, Vol. 229

    Google Scholar 

  • Kupfer H, Zelger C (1968) Biaxial Strength of Concrete (in German: Zweiachsige Festigkeit von Beton: Bau und Erprobung der Belastungseinrichtung). Technische Hochschule München, Materialprüfungsamt für das Bauwesen

    Google Scholar 

  • Kupfer H, Zelger C (1973) Bau und Erprobung einer Versuchseinrichtung für zweiachsige Belastung, Ernst & Sohn, Berlin, pp 108–131. Deutscher Ausschuss für Stahlbeton, Vol. 229

    Google Scholar 

  • Kupfer H, Hilsdorf HK, Rusch H (1969) Behavior of concrete under biaxial stresses, Title no. 66–52. ACI Journal 66(8):656–666

    Google Scholar 

  • Kupfer HB, Gerstle KH (1973) Behavior of concrete under biaxial stresses. J of the Eng Mechanics Division 99(4):853–866

    Google Scholar 

  • Lade PV (1982) Three-parameter failure criterion for concrete. J of the Engineering Mechanics Division 108(5):850–863

    Google Scholar 

  • Launay P, Gachon H (1971) Strain and ultimate strength of concrete under triaxial stress. In: Proceedings of the First International Conference on Structural Mechanics in Reactor Technology, Berlin, September 20-24, 1971. Commission of the European Communities, Brussels (EUR-4820), Vol. 3, paper Hl/3, pp 23–40

    Google Scholar 

  • Launay P, Gachon H (1972) Strain and ultimate strength of concrete under triaxial stress, paper SP 34-13. In: Kesler CE (ed) Concrete for Nuclear Reactors, Bundesanstalt für Materialprüfung in Berlin, Oct. 5-9, 1970, ACI Publication SP-34, American Concrete Institute, Detroit, pp 269–282

    Google Scholar 

  • Launay P, Gachon H, Poitevin P (1970) Déformation et résistance ultime du béton sous étreinte triaxiale. Annales de l’institut Technique du Batiment et de Travaux Publics, Série: Essais et Mesures (123) 269(5):21–48

    Google Scholar 

  • Lebedev AA (1965) Generalized criterion for the fatigue strength (in Russ.: Obobshchennyi kriterij dlitel’noj prochnosti). In: Thermal Strength of Materials and Structure Elements (in Russ.: Termoprochnost’ materialov i konstrukcionnykh elementov), vol 3, Naukova Dumka, Kiev, pp 69–76

    Google Scholar 

  • Leckie FA, Hayhurst DR (1977) Constitutive equations for creep rupture. Acta Metallurgica 25(9):1059–1070

    Article  Google Scholar 

  • Lee SK, Song YC, Han SH (2004) Biaxial behavior of plain concrete of nuclear containment building. Nuclear Engineering and Design 227(2):143–153

    Article  CAS  Google Scholar 

  • Link J (1976) Eine Formulierung des zweiaxialen Verformungs- und Bruchverhaltens von Beton und deren Anwendung auf die wirklichkeitsnahe Berechnung von Stahlbetonplatten. Deutscher Ausschuss für Stahlbeton 270:1–119

    Google Scholar 

  • Lubliner J, Oliver J, Oller S, Onate E (1989) A plastic-damage model for concrete. Int J of Solids and Structures 25(3):299–326

    Article  Google Scholar 

  • Mariotte E (1718) Traité du Mouvement des Eaux et des Autres Corps Fluides. J. Jambert, Paris

    Google Scholar 

  • Marti P (1980) Zur plastischen Berechnung von Stahlbeton. Diss., Institut für Baustatik und Konstruktion ETH Zürich, Birkhäuser Verlag, Basel

    Google Scholar 

  • Menétrey P, Willam KJ (1995) Triaxial failure criterion for concrete and its generalization. ACI Structural Journal 92(3)

    Google Scholar 

  • Mirolyubov IN (1953) On the generalization of the strengt theory based on the octaedral stresses in the case of brittle materials (in Russ.: K voprosu ob obobshchenii teorii prochnosti oktaedricheskikh kasatel’nykh napryazhenij na khrupkie materialy). Trudy Leningradskogo Technologicheskogo Instituta pp 42–52

    Google Scholar 

  • von Mises R (1913) Mechanik des festen Körpers im plastischen deformablen Zustand. Nachrichten der Königlichen Gesellschaft der Wissenschaften Göttingen, Mathematisch-physikalische Klasse pp 589–592

    Google Scholar 

  • Mittelstedt C, Becker W (2016) Strukturmechanik ebener Laminate. Technische Universtät Darmstadt, Darmstadt

    Google Scholar 

  • Mohr O (1900a) Welche Umstände bedingen die Elastizitätsgrenze und den Bruch eines Materials. Zeitschrift des VDI 45:1524–1530

    Google Scholar 

  • Mohr O (1900b) Welche Umstände bedingen die Elastizitätsgrenze und den Bruch eines Materials. Zeitschrift des VDI 46:1572–1577

    Google Scholar 

  • Mohr O (1914) Abhandlungen aus dem Gebiete der technischen Mechanik. Wilhelm & Sohn, Berlin

    Google Scholar 

  • Moradi M, Bagherieh AR, Esfahani MR (2018) Damage and plasticity constants of conventional and high-strength concrete. Part II: Statistical equation developmentt using genetic programming. Int J Optim Civil Eng 8(1):135–158

    Google Scholar 

  • Nielsen MP (1984) Limit analysis and concrete plasticity. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Ottosen NS (1975) Failure and elasticity of concrete. Report Risø-M-1801, Danish Atomic Energy Commission, Research Establishment Risö, Engineering Department, Roskilde

    Google Scholar 

  • Ottosen NS (1977) A failure criterion for concrete. J of the Engineering Mechanics Division 103(4):527–535

    Google Scholar 

  • Ottosen NS (1980) Nonlinear finite element analysis of concrete structures. Tech. rep., Risø-R-411, Roskilde: Risø National Laboratory

    Google Scholar 

  • Ottosen NS, Ristinmaa M (2005) The Mechanics of Constitutive Modeling. Elsevier Science, London

    Chapter  Google Scholar 

  • Park H, Kim JY (2005) Plasticity model using multiple failure criteria for concrete in compression. Int J of Solids and Structures 42(8):2303–2322

    Article  Google Scholar 

  • Paul B (1968) Macroscopic plastic flow and brittle fracture. In: Liebowitz H (ed) Fracture: An Advanced Treatise, vol II, Academic Press, New York, pp 313–496

    Google Scholar 

  • Pisarenko GS, Lebedev AA (1976) Deformation and Strength of Materials under Complex Stress State (in Russ.: Deformirovanie i prochnost’ materialov pri slozhnom napryazhennom sostoyanii). Naukowa Dumka, Kiev

    Google Scholar 

  • Podgórski J (1984) Limit state condition and the dissipation function for isotropic materials. Archives of Mechanics 36(3):323–342

    Google Scholar 

  • Podgórski J (1985) General failure criterion for isotropic media. J of Engineering Mechanics 111(2):188–201

    Article  Google Scholar 

  • Ren XD, Yang WZ, Zhou Y, Li J (2008) Behavior of high-performance concrete under uniaxial and biaxial loading. ACI Materials Journal 105(6):548–557

    Google Scholar 

  • Sandel GD (1919) Über die Festigkeitsbedingungen: Ein Beitrag zur Lösung der Frage der zulässigen Anstrengung der Konstruktionsmaterialen. Diss., TeH, Stuttgart

    Google Scholar 

  • Sayir M (1970) Zur Fließbedingung der Plastizitätstheorie. Ingenieur-Archiv 39:414–432

    Google Scholar 

  • Sayir M, Ziegler H (1969) Der Verträglichkeitssatz der Plastizitätstheorie und seine Anwendung auf räumlich unstetige Felder. Zeitschrift für angewandte Mathematik und Physik ZAMP 20(1):78–93

    Article  Google Scholar 

  • Schimmelpfennig K (1971) Concrete strength under multiaxial stress (in German: Die Festigkeit des Betons bei mehraxialer Belastung). Bericht Nr. 5, Institut für Konstruktiven Ingenieurbau, Forschungsgruppe Reaktordruckbehälter, Ruhr-Universität Bochum

    Google Scholar 

  • Schmidt R (1932) Über den Zusammenhang von Spannungen und Formänderungen im Verfesti- gungsgebiet. Ingenieur-Archiv 3(3):215–235

    Article  Google Scholar 

  • Seow PEC, Swaddiwudhipong S (2005) Failure surface for concrete under multiaxial load – A unified approach. J of Materials in Civil Engineering, ASCE 17(2):219–228

    Article  CAS  Google Scholar 

  • Shesterikov SA (1960) On the theory of ideal plastic solid (in Russ.: K postroeniju teorii ideal’no plastichnogo tela). Prikladnaja Matematika i Mekhanika, Otdelenie Tekhnicheskikh Nauk Akademii Nauk Sojusa SSR 24(3):412–415

    Google Scholar 

  • Speck K (2008) Beton unter mehraxialer Beanspruchung. Diss., Fakultät Bauingenieurwesen, Technische Universität Dresden

    Google Scholar 

  • Sun L, Huang WM, Purnawali H (2011) Constitutive model for concrete under multiaxial loading conditions. Advanced Materials Research 163–167:1171–1174

    Article  Google Scholar 

  • Tasuji ME (1976) The behavior of plan concrete subject to biaxial stress. Research report no. 360, Department of Structural Engineering, Cornell University, Ithaca

    Google Scholar 

  • Tasuji ME, Slate FO, Nilson AH (1978) Stress-strain response and fracture of concrete in biaxial loading. ACI J Proceedings 75(7):306–312

    Google Scholar 

  • Tasuji ME, Nilson AH, Slate FO (1979) Biaxial stress-strain relationships for concrete. Magazine of Concrete Research 31(109):217–224

    Article  Google Scholar 

  • Timoshenko SP (1953) History of Strength of Materials: With a Brief Account of the History of Theory of Elasticity and Theory of Structure. McGraw-Hill, New York

    Google Scholar 

  • Torre C (1947) Einfluß der mittleren Hauptnormalspannung auf die Fließ- und Bruchgrenze. Österreichisches Ingenieur-Archiv I(4/5):316–342

    Google Scholar 

  • Tóth LF (1964) Regular Figures. Pergamon Press, Oxford

    Google Scholar 

  • Tresca H (1868) Mémoire sur l’ecoulement des corps solides. Mémoires Pres par Div Savants 18:733–799

    Google Scholar 

  • Troost A, Betten J (1974) Zur Frage der Konvexität von Fließbedingungen bei plastischer Inkom- pressibilität und Kompressibilität. Mechanics Research Communications 1:73–78

    Article  Google Scholar 

  • Walser H (2018) Isogonal polygons (in German: Isogonale Vielecke). http://www.walser-h-m.ch, Frauenfeld

    Google Scholar 

  • Willam KJ, Warnke EP (1975) Constitutive model for the triaxial behavior of concrete. In: Colloquium on Concrete Structures Subjected to Triaxial Stresses, vol 19, pp 1–30

    Google Scholar 

  • Wolfram S (2003) The Mathematica Book: The Definitive Best-Selling Presentation of Mathematica by the Creator of the System. Wolfram Media, Champaign

    Google Scholar 

  • Wronski AS, Pick M (1977) Pyramidal yield criteria for epoxides. J of Materials Science 12(1):28–34

    Article  CAS  Google Scholar 

  • Wu EM (1973) Phenomenological anisotropic failure criterion. In: Broutman LJ, Krock RH, Sendeckyj GP (eds) Treatise on Composite Materials, Academic Press, New York, vol 2, pp 353–431

    Google Scholar 

  • Xiaoping V, Ottosen NS, Thelandersson S, Nielsen MP (1989) Review of constructive models for concrete, EUR 12394 EN. Final Report Ispra, Reactor Safety Programme 1985-1987, Commission of the European Communities, Nuclear Science and Technology, Contract No. 3301-87-12 ELISPDK, Luxembourg

    Google Scholar 

  • Yagn YI (1931) New methods of strength prediction (in Russ.: Novye metody rascheta na prochnost’). Vestnik inzhenerov i tekhnikov 6:237–244

    Google Scholar 

  • Yu MH (1961) General behaviour of isotropic yield function (in Chinese). Scientific and Technological Research Paper of Xi’an Jiaotong University pp 1–11

    Google Scholar 

  • Yu MH (2002) Advances in strength theories for materials under complex stress state in the 20th century. Applied Mechanics Reviews 55(3):169–218

    Article  Google Scholar 

  • Yu MH (2018) Unified Strength Theory and its Applications. Springer, Singapore

    Google Scholar 

  • Yu MH, Yu SQ (2019) Introduction to Unified Strength Theory. CRC Press/Balkema, London

    Chapter  Google Scholar 

  • Życzkowski M (1981) Combined Loadings in the Theory of Plasticity. PWN-Polish Scientific Publ., Warszawa midal yield criteria for epoxides. J of Materials Science 12(1):28–34

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir A. Kolupaev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rosendahl, P.L., Kolupaev, V.A., Altenbach, H. (2019). Extreme Yield Figures for Universal Strength Criteria. In: Altenbach, H., Öchsner, A. (eds) State of the Art and Future Trends in Material Modeling . Advanced Structured Materials, vol 100. Springer, Cham. https://doi.org/10.1007/978-3-030-30355-6_12

Download citation

Publish with us

Policies and ethics