Skip to main content

Inverse Acoustic Obstacle Scattering

  • Chapter
  • First Online:
Inverse Acoustic and Electromagnetic Scattering Theory

Part of the book series: Applied Mathematical Sciences ((AMS,volume 93))

Abstract

With the analysis of the preceding chapters, we now are well prepared for studying inverse acoustic obstacle scattering problems. We recall that the direct scattering problem is, given information on the boundary of the scatterer and the nature of the boundary condition, to find the scattered wave and in particular its behavior at large distances from the scatterer, i.e., its far field. The inverse problem starts from this answer to the direct problem, i.e., a knowledge of the far field pattern, and asks for the nature of the scatterer. Of course, there is a large variety of possible inverse problems, for example, if the boundary condition is known, find the shape of the scatterer, or, if the shape is known, find the boundary condition, or, if the shape and the type of the boundary condition are known for a penetrable scatterer, find the space dependent coefficients in the transmission or resistive boundary condition, etc. Here, following the main guideline of our book, we will concentrate on one model problem for which we will develop ideas which in general can also be used to study a wider class of related problems. The inverse problem we consider is, given the far field pattern for one or several incident plane waves and knowing that the scatterer is sound-soft, to determine the shape of the scatterer. We want to discuss this inverse problem for frequencies in the resonance region, that is, for scatterers D and wave numbers k such that the wavelengths 2πk is less than or of a comparable size to the diameter of the scatterer. This inverse problem turns out to be nonlinear and improperly posed. Although both of these properties make the inverse problem hard to solve, it is the latter which presents the more challenging difficulties. The inverse obstacle problem is improperly posed since, as we already know, the determination of the scattered wave u s from a given far field pattern u is improperly posed. It is nonlinear since, given the incident wave u i and the scattered wave u s, the problem of finding the boundary of the scatterer as the location of the zeros of the total wave u i + u s is nonlinear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York 1975.

    MATH  Google Scholar 

  2. Akduman, I., and Kress, R.: Direct and inverse scattering problems for inhomogeneous impedance cylinders of arbitrary shape. Radio Science 38, 1055–1064 (2003).

    Article  Google Scholar 

  3. Alessandrini, G., and Rondi, L.: Determining a sound–soft polyhedral scatterer by a single far–field measurement. Proc. Amer. Math. Soc. 133, 1685–1691 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  4. Altundag, A., and Kress, R.: On a two-dimensional inverse scattering problem for a dielectric. Applicable Analysis 91, 757–771 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  5. Altundag, A., and Kress, R.: An iterative method for a two-dimensional inverse scattering problem for a dielectric. Jour. on Inverse and Ill-Posed Problem 20, 575–590 (2012).

    MathSciNet  MATH  Google Scholar 

  6. Alves, C.J.S., and Ha-Duong, T.: On inverse scattering by screens. Inverse Problems 13, 1161–1176 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  7. Angell, T.S., Colton, D., and Kirsch, A.: The three dimensional inverse scattering problem for acoustic waves. J. Diff. Equations 46, 46–58 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  8. Angell, T.S., Kleinman, R.E., and Roach, G.F.: An inverse transmission problem for the Helmholtz equation. Inverse Problems 3, 149–180 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  9. Aramini, R., Caviglia, G., Masa, A., and Piana, M.: The linear sampling method and energy conservation. Inverse Problems 26, 05504 (2010).

    Article  MathSciNet  Google Scholar 

  10. Arens, T.: Why linear sampling works. Inverse Problems 20, 163–173 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  11. Arens, T., and Lechleiter, A.: The linear sampling method revisited. Jour. Integral Equations and Applications 21, 179–202 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  12. Audibert, L., and Haddar, H.: A generalized formulation of the linear sampling method with exact characterization of targets in terms of far field measurements. Inverse Problems 30, 035011 (2015).

    Article  MATH  Google Scholar 

  13. Bellis, C., Bonnet, M., and Cakoni, F.: Acoustic inverse scattering using topological derivative of far-field measurements-based L 2 cost functionals. Inverse Problems 29, 075012 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  14. Bleistein, N.: Mathematical Methods for Wave Phenomena. Academic Press, Orlando 1984.

    MATH  Google Scholar 

  15. Blöhbaum, J.: Optimisation methods for an inverse problem with time-harmonic electromagnetic waves: an inverse problem in electromagnetic scattering. Inverse Problems 5, 463–482 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  16. Bojarski, N.N.: Three dimensional electromagnetic short pulse inverse scattering. Spec. Proj. Lab. Rep. Syracuse Univ. Res. Corp., Syracuse 1967.

    Google Scholar 

  17. Bojarski, N.N.: A survey of the physical optics inverse scattering identity. IEEE Trans. Ant. Prop. AP-20, 980–989 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  18. Bourgeois, L., Chaulet, N., and Haddar, H.: Stable reconstruction of generalized impedance boundary conditions. Inverse Problems 27, 095002 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  19. Bourgeois, L., Chaulet, N., and Haddar, H.: On simultaneous identification of a scatterer and its generalized impedance boundary condition. SIAM J. Sci. Comput. 34, A1824–A1848 (2012).

    Article  MATH  Google Scholar 

  20. Bourgeois, L., and Haddar, H.: Identification of generalized impedance boundary conditions in inverse scattering problems. Inverse Problems and Imaging 4, 19–38, (2010).

    Article  MathSciNet  MATH  Google Scholar 

  21. Burger, M.: A level set method for inverse problems. Inverse Problems 17, 1327–1355 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  22. Cakoni, F., and Colton, D.: The determination of the surface impedance of a partially coated obstacle from far field data. SIAM J. Appl. Math. 64, 709–723 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  23. Cakoni, F., and Colton, D.: Qualitative Methods in Inverse Scattering Theory. Springer, Berlin 2006.

    MATH  Google Scholar 

  24. Cakoni, F., Colton, D., and Haddar, H.: Inverse Scattering Theory and Transmission Eigenvalues. SIAM, Philadelphia 2016.

    Book  MATH  Google Scholar 

  25. Cakoni, F., Hu, Y., and Kress, R.: Simultaneous reconstruction of shape and generalized impedance functions in electrostatic imaging. Inverse Problems 30, 105009 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  26. Cakoni, F., and Kress, R.: Integral equation methods for the inverse obstacle problem with generalized impedance boundary condition. Inverse Problems 29, 015005 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  27. Catapano, I., Crocco, L., and Isernia, T.: On simple methods for shape reconstruction of unknown scatterers. IEEE Trans. Antennas Prop. 55, 1431–1436 (2007).

    Article  Google Scholar 

  28. Cheng, J., and Yamamoto, M.: Uniqueness in an inverse scattering problem within non-trapping polygonal obstacles with at most two incoming waves. Inverse Problems 19, 1361–1384 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  29. Colton, D., and Kirsch, A.: Karp’s theorem in acoustic scattering theory. Proc. Amer. Math. Soc. 103, 783–788 (1988).

    MathSciNet  MATH  Google Scholar 

  30. Colton, D., and Kirsch, A.: A simple method for solving inverse scattering problems in the resonance region. Inverse Problems 12, 383–393 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  31. Colton, D., and Kress, R.: On the denseness of Herglotz wave functions and electromagnetic Herglotz pairs in Sobolev spaces. Math. Methods Applied Science 24, 1289–1303 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  32. Colton, D., and Kress, R.: Using fundamental solutions in inverse scattering. Inverse Problems 22, R49–R66 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  33. Colton, D., and Kress, R.: Integral Equation Methods in Scattering Theory. SIAM Publications, Philadelphia 2013.

    Book  MATH  Google Scholar 

  34. Colton, D., and Monk, P.: A novel method for solving the inverse scattering problem for time-harmonic acoustic waves in the resonance region. SIAM J. Appl. Math. 45, 1039–1053 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  35. Colton, D., and Monk, P.: A novel method for solving the inverse scattering problem for time-harmonic acoustic waves in the resonance region II. SIAM J. Appl. Math. 46, 506–523 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  36. Colton, D., and Monk, P.: The numerical solution of the three dimensional inverse scattering problem for time-harmonic acoustic waves. SIAM J. Sci. Stat. Comp. 8, 278–291 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  37. Colton, D., and Sleeman, B.D.: Uniqueness theorems for the inverse problem of acoustic scattering. IMA J. Appl. Math. 31, 253–259 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  38. Colton, D., and Sleeman, B.D.: An approximation property of importance in inverse scattering theory. Proc. Edinburgh Math. Soc. 44, 449–454 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  39. Devaney, A.J.: Mathematical Foundations of Imaging, Tomography and Wavefield Inversion. Cambridge University Press, Cambridge 2012.

    Book  MATH  Google Scholar 

  40. Dorn, O., and Lesselier, D.: Level set methods for inverse scattering - some recent developments. Inverse Problems 25, 125001 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  41. Farhat, C., Tezaur, R., and Djellouli, R.: On the solution of three-dimensional inverse obstacle acoustic scattering problems by a regularized Newton method. Inverse Problems 18, 1229–1246 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  42. Feijoo, G.R.: A new method in inverse scattering based on the topological derivative. Inverse Problems 20, 1819–1840 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  43. Gerlach, T. and Kress, R.: Uniqueness in inverse obstacle scattering with conductive boundary condition. Inverse Problems 12, 619–625 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  44. Gilbarg, D., and Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin 1977.

    Book  MATH  Google Scholar 

  45. Gintides, D.: Local uniqueness for the inverse scattering problem in acoustics via the Faber–Krahn inequality. Inverse Problems 21, 1195–1205 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  46. Haas, M., and Lehner, G.: Inverse 2D obstacle scattering by adaptive iteration. IEEE Transactions on Magnetics 33, 1958–1961 (1997)

    Article  Google Scholar 

  47. Hanke, M.: Why linear sampling really seems to work. Inverse Problems and Imaging 2, 373–395 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  48. Hanke, M., Hettlich, F., and Scherzer, O.: The Landweber iteration for an inverse scattering problem. In: Proceedings of the 1995 Design Engineering Technical Conferences, Vol. 3, Part C (Wang et al, eds).

    Google Scholar 

  49. Harbrecht, H., and Hohage. T.: Fast methods for three-dimensional inverse obstacle scattering problems. Jour. Integral Equations and Appl. 19, 237–260 (2007).

    Google Scholar 

  50. Hettlich, F.: On the uniqueness of the inverse conductive scattering problem for the Helmholtz equation. Inverse Problems 10, 129–144 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  51. Hettlich, F.: Fréchet derivatives in inverse obstacle scattering. Inverse Problems 11, 371–382 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  52. Hettlich, F.: An iterative method for the inverse scattering problem from sound-hard obstacles. In: Proceedings of the ICIAM 95, Vol. II, Applied Analysis (Mahrenholz and Mennicken, eds). Akademie Verlag, Berlin (1996).

    Google Scholar 

  53. Hettlich, F., and Rundell, W.: A second degree method for nonlinear inverse problem. SIAM J. Numer. Anal. 37, 587–620 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  54. Hohage, T.: Logarithmic convergence rates of the iteratively regularized Gauss–Newton method for an inverse potential and an inverse scattering problem. Inverse Problems 13, 1279–1299 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  55. Hohage, T.: Iterative Methods in Inverse Obstacle Scattering: Regularization Theory of Linear and Nonlinear Exponentially Ill-Posed Problems. Dissertation, Linz 1999.

    Google Scholar 

  56. Ikehata, M.: Reconstruction of the shape of an obstacle from the scattering amplitude at a fixed frequency. Inverse Problems 14, 949–954 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  57. Ikehata, M.: Reconstruction of obstacle from boundary measurements. Wave Motion 30, 205–223 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  58. Imbriale, W.A., and Mittra, R.: The two-dimensional inverse scattering problem. IEEE Trans. Ant. Prop. AP-18, 633–642 (1970).

    Article  Google Scholar 

  59. Isakov, V.: On uniqueness in the inverse transmission scattering problem. Comm. Part. Diff. Equa. 15, 1565–1587 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  60. Isakov, V.: Inverse Problems for Partial Differential Equations. 2nd ed, Springer, Berlin 2006.

    MATH  Google Scholar 

  61. Ivanyshyn, O.: Shape reconstruction of acoustic obstacles from the modulus of the far field pattern. Inverse Problems and Imaging 1, 609–622 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  62. Ivanyshyn, O.: Nonlinear Boundary Integral Equations in Inverse Scattering. Dissertation, Göttingen, 2007.

    Google Scholar 

  63. Ivanyshyn Yaman, O.: Reconstruction of generalized impedance functions for 3D acoustic scattering. J. Comput. Phys., to appear.

    Google Scholar 

  64. Ivanyshyn, O., and Johansson, T.: Nonlinear integral equation methods for the reconstruction of an acoustically sound-soft obstacle. J. Integral Equations Appl. 19, 289–308 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  65. Ivanyshyn, O., and Johansson, T.: A coupled boundary integral equation method for inverse sound-soft scattering. In: Proceedings of waves 2007. The 8th international conference on mathematical and numerical aspects of waves, University of Reading, 153–155 (2007).

    Google Scholar 

  66. Ivanyshyn, O., and Kress, R.: Nonlinear integral equations in inverse obstacle scattering. In: Mathematical Methods in Scattering Theory and Biomedical Engineering, (Fotiatis and Massalas, eds). World Scientific, Singapore, 39–50 (2006).

    Google Scholar 

  67. Ivanyshyn, O., and Kress, R.: Inverse scattering for planar cracks via nonlinear integral equations. Math. Meth. Appl. Sciences 31, 1221–1232 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  68. Ivanyshyn, O., and Kress, R.: Identification of sound-soft 3D obstacles from phaseless data. Inverse Problems and Imaging 4, 131–149 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  69. Ivanyshyn, O., and Kress, R.: Inverse scattering for surface impedance from phase-less far field data. J. Comput. Phys. 230, 3443–3452 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  70. Ivanyshyn, O., Kress, R., and Serranho, P.: Huygens’ principle and iterative methods in inverse obstacle scattering. Adv. Comput. Math. 33, 413–429 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  71. Johansson, T., and Sleeman, B.: Reconstruction of an acoustically sound-soft obstacle from one incident field and the far field pattern. IMA J. Appl. Math. 72, 96–112 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  72. Karp, S.N.: Far field amplitudes and inverse diffraction theory. In: Electromagnetic Waves (Langer, ed). Univ. of Wisconsin Press, Madison, 291–300 (1962).

    Google Scholar 

  73. Kirsch, A.: The domain derivative and two applications in inverse scattering. Inverse Problems 9, 81–96 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  74. Kirsch, A.: Characterization of the shape of the scattering obstacle by the spectral data of the far field operator. Inverse Problems 14, 1489–1512 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  75. Kirsch, A., and Grinberg, N.: The Factorization Method for Inverse Problems. Oxford University Press, Oxford, 2008.

    MATH  Google Scholar 

  76. Kirsch, A., and Kress, R.: On an integral equation of the first kind in inverse acoustic scattering. In: Inverse Problems (Cannon and Hornung, eds). ISNM 77, 93–102 (1986).

    Google Scholar 

  77. Kirsch, A., and Kress, R.: An optimization method in inverse acoustic scattering. In: Boundary elements IX, Vol 3. Fluid Flow and Potential Applications (Brebbia, Wendland and Kuhn, eds). Springer, Berlin, 3–18 (1987).

    Google Scholar 

  78. Kirsch, A., and Kress, R.: Uniqueness in inverse obstacle scattering. Inverse Problems 9, 285–299 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  79. Kirsch, A., Kress, R., Monk, P., and Zinn, A.: Two methods for solving the inverse acoustic scattering problem. Inverse Problems 4, 749–770 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  80. Kress, R.: Inverse scattering from an open arc. Math. Meth. in the Appl. Sci. 18, 267–293 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  81. Kress, R.: Integral equation methods in inverse acoustic and electromagnetic scattering. In: Boundary Integral Formulations for Inverse Analysis (Ingham and Wrobel, eds). Computational Mechanics Publications, Southampton, 67–92 (1997).

    Google Scholar 

  82. Kress, R.: Newton’s Method for inverse obstacle scattering meets the method of least squares. Inverse Problems 19, 91–104 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  83. Kress, R.: Linear Integral Equations. 3rd ed, Springer, Berlin 2014.

    Book  MATH  Google Scholar 

  84. Kress, R.: Integral equation methods in inverse obstacle scattering with a generalized impedance boundary condition. In: Contemporary Computational Mathematics - A Celebration of the 80th Birthday of Ian Sloan (Dick, Kuo and Wozniakowski, eds). Springer, New York, 721–740 (2018).

    Google Scholar 

  85. Kress, R.: Nonlocal impedance conditions in direct and inverse obstacle scattering. Inverse Problems 35, 024002 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  86. Kress, R., and Päivärinta, L.: On the far field in obstacle scattering. SIAM J. Appl. Math. 59, 1413–1426 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  87. Kress, R., and Rundell, W.: A quasi-Newton method in inverse obstacle scattering. Inverse Problems 10, 1145–1157 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  88. Kress, R., and Rundell, W.: Inverse obstacle scattering with modulus of the far field pattern as data. In: Inverse Problems in Medical Imaging and Nondestructive Testing (Engl, Louis and Rundell , eds). Springer, Wien, 75–92 (1997).

    Google Scholar 

  89. Kress, R., and Rundell, W.: Inverse obstacle scattering using reduced data. SIAM J. Appl. Math. 59, 442–454 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  90. Kress, R., and Rundell, W.: Inverse scattering for shape and impedance. Inverse Problems 17, 1075–1085 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  91. Kress, R., and Rundell, W.: Nonlinear integral equations and the iterative solution for an inverse boundary value problem. Inverse Problems 21, 1207–1223 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  92. Kress, R., and Rundell, W.: Inverse scattering for shape and impedance revisited. Jour. Integral Equations and Appl. 30, 293–311 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  93. Kress, R., and Serranho, P.: A hybrid method for two-dimensional crack reconstruction. Inverse Problems 21, 773–784 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  94. Kress, R., and Serranho, P.: A hybrid method for sound-hard obstacle reconstruction. J. Comput. Appl. Math. 24, 418–427 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  95. Kress, R., Tezel, N., and Yaman, F.: A second order Newton method for sound soft inverse obstacle scattering. Jour. Inverse and Ill-Posed Problems 17, 173–185 (2009).

    MathSciNet  MATH  Google Scholar 

  96. Kress, R., and Zinn, A.: On the numerical solution of the three dimensional inverse obstacle scattering problem. J. Comp. Appl. Math. 42, 49–61 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  97. Langenberg, K.J.: Applied inverse problems for acoustic, electromagnetic and elastic wave scattering. In: Basic Methods of Tomography and Inverse Problems (Sabatier, ed). Adam Hilger, Bristol and Philadelphia, 127–467 (1987).

    Google Scholar 

  98. Lax, P.D., and Phillips, R.S.: Scattering Theory. Academic Press, New York 1967.

    MATH  Google Scholar 

  99. Lee, K.M.: Inverse scattering via nonlinear integral equations for a Neumann crack. Inverse Problems 22, 1989–2000 ( 2006).

    Article  MathSciNet  MATH  Google Scholar 

  100. Leis, R.: Initial Boundary Value Problems in Mathematical Physics. John Wiley, New York 1986.

    Book  MATH  Google Scholar 

  101. Le Louër, F., and Rapún, M.-L.: Topological sensitivity for solving inverse multiple scattering problems in 3D electromagnetism. Part I : One step method. SIAM J. Imaging Sci. 10, 1291–1321 (2017).

    MATH  Google Scholar 

  102. Le Louër, F., and Rapún, M.-L.: Topological sensitivity for solving inverse multiple scattering problems in 3D electromagnetism. Part II : Iterative method. SIAM J. Imaging Sci. 11, 734–769 (2018).

    MATH  Google Scholar 

  103. Liu, C.: Inverse obstacle problem: local uniqueness for rougher obstacles and the identification of a ball. Inverse Problems 13, 1063–1069 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  104. Liu, H., and Zou, J.: Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and sound-soft polyhedral scatterers. Inverse Problems 22, 515–524 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  105. McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge 2000.

    MATH  Google Scholar 

  106. Mönch, L.: A Newton method for solving the inverse scattering problem for a sound-hard obstacle. Inverse Problems 12, 309–323 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  107. Mönch, L.: On the inverse acoustic scattering problem from an open arc: the sound-hard case. Inverse Problems 13, 1379–1392 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  108. Moré, J.J.: The Levenberg–Marquardt algorithm, implementation and theory. In: Numerical analysis (Watson, ed). Springer Lecture Notes in Mathematics 630, Berlin, 105–116 (1977).

    Google Scholar 

  109. Natterer, F.: The Mathematics of Computerized Tomography. Teubner, Stuttgart and Wiley, New York 1986.

    Google Scholar 

  110. Osher, S., and Sethian, J. A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  111. Pironneau, O.: Optimal Shape Design for Elliptic Systems. Springer, Berlin 1984.

    Book  MATH  Google Scholar 

  112. Potthast, R.: Fréchet differentiability of boundary integral operators in inverse acoustic scattering. Inverse Problems 10, 431–447 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  113. Potthast, R.: Fréchet Differenzierbarkeit von Randintegraloperatoren und Randwertproblemen zur Helmholtzgleichung und den zeitharmonischen Maxwellgleichungen. Dissertation, Göttingen 1994.

    Google Scholar 

  114. Potthast, R.: Domain derivatives in electromagnetic scattering. Math. Meth. in the Appl. Sci. 19, 1157–1175 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  115. Potthast, R.: A fast new method to solve inverse scattering problems. Inverse Problems 12, 731–742 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  116. Potthast, R.: A point-source method for inverse acoustic and electromagnetic obstacle scattering problems. IMA J. Appl. Math 61, 119–140 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  117. Potthast, R.: Stability estimates and reconstructions in inverse acoustic scattering using singular sources. J. Comp. Appl. Math. 114, 247–274 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  118. Potthast, R.: On the convergence of a new Newton-type method in inverse scattering. Inverse Problems 17, 1419–1434 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  119. Potthast, R.: Point-Sources and Multipoles in Inverse Scattering Theory. Chapman & Hall, London 2001.

    Book  MATH  Google Scholar 

  120. Potthast, R.: A survey on sampling and probe methods for inverse problems. Inverse Problems 22, R1–R47 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  121. Potthast, R. and Schulz, J.: A multiwave range test for obstacle reconstructions with unknown physical properties. J. Comput. Appl. Math. 205, 53–71 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  122. Ramm, A.G.: Scattering by Obstacles. D. Reidel Publishing Company, Dordrecht 1986.

    Book  MATH  Google Scholar 

  123. Roger, A.: Newton Kantorovich algorithm applied to an electromagnetic inverse problem. IEEE Trans. Ant. Prop. AP-29, 232–238 (1981).

    Article  MATH  Google Scholar 

  124. Santosa, F.: A level set approach for inverse problems involving obstacles. ESAIM Control Optim. Calculus Variations 1, 17–33 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  125. Schormann, C.: Analytische und numerische Untersuchungen bei inversen Transmissionsproblemen zur zeitharmonischen Wellengleichung. Dissertation, Göttingen 2000.

    Google Scholar 

  126. Serranho, P.: A hybrid method for inverse scattering for shape and impedance. Inverse Problems 22, 663–680 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  127. Serranho, P.: A hybrid method for sound-soft obstacles in 3D. Inverse Problems and Imaging 1, 691–712 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  128. Sleeman, B. D.: The inverse problem of acoustic scattering. IMA. J. Appl. Math 29, 113–142 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  129. Sokolowski, J., and Zochowski, A.: On the topological derivative in shape optimization. SIAM J. Control Optim., 37, 1251–1272 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  130. Stefanov, P., and Uhlmann, G.: Local uniqueness for the fixed energy fixed angle inverse problem in obstacle scattering. Proc. Amer. Math. Soc. 132, 1351–1354 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  131. Treves, F.: Basic Linear Partial Differential Equations. Academic Press, New York 1975.

    MATH  Google Scholar 

  132. Zinn, A.: On an optimisation method for the full- and limited-aperture problem in inverse acoustic scattering for a sound-soft obstacle. Inverse Problems 5, 239–253 (1989).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Colton, D., Kress, R. (2019). Inverse Acoustic Obstacle Scattering. In: Inverse Acoustic and Electromagnetic Scattering Theory. Applied Mathematical Sciences, vol 93. Springer, Cham. https://doi.org/10.1007/978-3-030-30351-8_5

Download citation

Publish with us

Policies and ethics