Skip to main content

Hypotensive Syndromes and Heart Failure

  • Chapter
  • First Online:
Hypotensive Syndromes in Geriatric Patients

Abstract

Hypotensive syndromes may contribute to heart failure and also may occur in patients with heart failure. In some patients, hypotensive hemodynamic responses result from a failure of compensatory autonomic nervous system reflex mechanisms. Medications used for the treatment of heart failure may also contribute to these hypotensive syndromes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barker WH, Mullooly JP, Getchell W. Changing incidence and survival for heart failure in a well-defined older population, 1970–1974 and 1990–1994. Circulation. 2006;113:799–805.

    Article  PubMed  Google Scholar 

  2. Kishi T. Heart failure as an autonomic nervous system dysfunction. J Cardiol. 2012;59:117–22.

    Article  PubMed  Google Scholar 

  3. Kirchheim HR. Systemic arterial baroreceptor reflexes. Physiol Rev. 1976;56:100–77.

    Article  CAS  PubMed  Google Scholar 

  4. Kishi T. Heart failure as a disruption of dynamic circulatory homeostasis mediated by brain. Int Heart J. 2016;57:145–9.

    Article  CAS  PubMed  Google Scholar 

  5. Floras JS. Clinical aspects of sympathetic activation and parasympathetic withdrawal in heart failure. J Am Coll Cardiol. 1993;22:72A–84A.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang DY, Anderson AS. The sympathetic nervous system and heart failure. Cardiol Clin. 2014;32(1):33–45.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Watson AM, Hood SG, May CN. Mechanisms of sympathetic activation in heart failure. Clin Exp Pharmacol Physiol. 2006;33:1269–74.

    Article  CAS  PubMed  Google Scholar 

  8. Pepper GS, Lee RW. Sympathetic activation in heart failure and its treatment with beta-blockade. Arch Intern Med. 1999;159:225–34.

    Article  CAS  PubMed  Google Scholar 

  9. Grassi G, Seravalle G, Quarti-Trevano F, et al. Sympathetic and baroreflex cardiovascular control in hypertension-related left ventricular dysfunction. Hypertension. 2009;53:205–9.

    Article  CAS  PubMed  Google Scholar 

  10. Hogg K, McMurray J. Neurohumoral pathways in heart failure with preserved systolic function. Prog Cardiovasc Dis. 2005;47:357–66.

    Article  CAS  PubMed  Google Scholar 

  11. Dibner-Dunlap ME, Thames MD. Control of sympathetic nerve activity by vagal mechanoreflexes is blunted in heart failure. Circulation. 1992;86:1929–34.

    Article  CAS  PubMed  Google Scholar 

  12. Piacentino V, Weber CR, Chen X, et al. Cellular basis of abnormal calcium transients of failing human ventricular myocytes. Circ Res. 2003;92:651–8.

    Article  CAS  PubMed  Google Scholar 

  13. Brouri F, Hanoun N, Mediani O, et al. Blockade of beta 1- and desensitization of beta 2-adrenoceptors reduce isoprenaline-induced cardiac fibrosis. Eur J Pharmacol. 2004;485:227–34.

    Article  CAS  PubMed  Google Scholar 

  14. Dunlap ME, Bibevski S, Rosenberry TL, Ernsberger P. Mechanisms of altered vagal control in heart failure: influence of muscarinic receptors and acetylcholinesterase activity. Am J Physiol Heart Circ Physiol. 2003;285:H1632–40.

    Article  CAS  PubMed  Google Scholar 

  15. Saul JP, Arai Y, Berger RD, et al. Assessment of autonomic regulation in chronic congestive heart failure by heart rate spectral analysis. Am J Cardiol. 1988;61:1292–9.

    Article  CAS  PubMed  Google Scholar 

  16. Kinugawa T, Dibner-Dunlap ME. Altered vagal and sympathetic control of heart rate in left ventricular dysfunction and heart failure. Am J Phys. 1995;268:R310–6.

    CAS  Google Scholar 

  17. Adamopoulos S, Piepoli M, McCance A, et al. Comparison of different methods for assessing sympathovagal balance in chronic congestive heart failure secondary to coronary artery disease. Am J Cardiol. 1992;70:1576–82.

    Article  CAS  PubMed  Google Scholar 

  18. Lahiri MK, Kannankeril PJ, Goldberger JJ. Assessment of autonomic function in cardiovascular disease: physiological basis and prognostic implications. J Am Coll Cardiol. 2008;51:1725–33.

    Article  PubMed  Google Scholar 

  19. La Rovere MT, Pinna GD, Maestri R, et al. Short-term heart rate variability strongly predicts sudden cardiac death in chronic heart failure patients. Circulation. 2003;107:565–70.

    Article  PubMed  Google Scholar 

  20. Piotrowicz E, Baranowski R, Piotrowska M, et al. Variable effects of physical training of heart rate variability, heart rate recovery, and heart rate turbulence in chronic heart failure. Pacing Clin Electrophysiol. 2009;32(Suppl 1):S113–5.

    Article  PubMed  Google Scholar 

  21. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur Heart J. 1996;17:354–81.

    Article  Google Scholar 

  22. Smyth HS, Sleight P, Pickering GW. Reflex regulation of arterial pressure during sleep in man. A quantitative method for assessing baroreflex sensitivity. Circ Res. 1969;24:109–21.

    Article  CAS  PubMed  Google Scholar 

  23. Chatterjee NA, Singh JP. Novel intervention therapies to modulate the autonomic tone in heart failure. JACC Heart Failure. 2015;3(10):786–802.

    Article  PubMed  Google Scholar 

  24. Gorelik O, Feldman L, Cohen N. Heart failure and orthostatic hypotension. Heart Fail Rev. 2016;21:529–38.

    Article  PubMed  Google Scholar 

  25. Verwoert GC, Mattace- Raso FU, Hofman A, et al. Orthostatic hypotension and risk of cardiovascular disease in the elderly people: the Rotterdam study. J Am Geriatr Soc. 2008;56(10):1816–20.

    Article  PubMed  Google Scholar 

  26. Fedorowski A, Engström G, Hedblad B, et al. Orthostatic hypotension predicts incidence of heart failure: the Malmö preventive project. Am J Hypertens. 2010;23:1209–15.

    Article  PubMed  Google Scholar 

  27. Alagiakrishnan K, Patel K, Desai RV, et al. Orthostatic hypotension and incident heart failure in community-dwelling older adults. J Gerontol A Biol Sci Med Sci. 2014;69:223–30.

    Article  PubMed  Google Scholar 

  28. Guichard JL, Desai RV, Ahmed MI, et al. Isolated diastolic hypotension and incident heart failure in older adults. Hypertension. 2011;58(5):895–901.

    Article  CAS  PubMed  Google Scholar 

  29. Jones CD, Loehr L, Franceschini N, et al. Orthostatic hypotension as a risk factor for incident heart failure: the Atherosclerosis Risk in Communities (ARIC) study. Hypertension. 2012;59(5):913–8.

    Article  CAS  PubMed  Google Scholar 

  30. Freeman R, Wieling W, Axelrod FB, et al. Consensus statement on the definition of orthostatic hypotension, neurally mediated syncope and the postural tachycardia syndrome. Clin Auton Res. 2011;21:69–72.

    Article  PubMed  Google Scholar 

  31. Mattace-Raso FU, van der Cammen TJ, Knetsch AM, et al. Arterial stiffness as the candidate underlying mechanism for postural blood pressure changes and orthostatic hypotension in older adults: the Rotterdam study. J Hypertens. 2006;24:339–44.

    Article  CAS  PubMed  Google Scholar 

  32. James MA, Potter JF. Orthostatic blood pressure changes and arterial baroreflex sensitivity in elderly subjects. Age Ageing. 1999;28:522–30.

    Article  CAS  PubMed  Google Scholar 

  33. Voichanski S, Grossman C, Leibowitz A, et al. Orthostatic hypotension is associated with nocturnal change in systolic blood pressure. Am J Hypertens. 2012;25:159–64.

    Article  PubMed  Google Scholar 

  34. Mortara A, La Rovere MT, Pinna GD, et al. Arterial baroreflex modulation of heart rate in chronic heart failure: clinical and hemodynamic correlates and prognostic implications. Circulation. 1997;96:3450–8.

    Article  CAS  PubMed  Google Scholar 

  35. Arbogast SD, Alshekhlee A, Hussain Z, et al. Hypotension unawareness in profound orthostatic hypotension. Am J Med. 2009;122:574–80.

    Article  PubMed  Google Scholar 

  36. Potocka-Plazak K, Plazak W. Orthostatic hypotension in elderly women with congestive heart failure. Aging Clin Exp Res. 2001;13:378–84.

    Article  CAS  Google Scholar 

  37. Magnusson M, Holm H, Bachus E, et al. Orthostatic hypotension and cardiac changes after long-term follow-up. Am J Hypertens. 2016;29:847–52.

    Article  PubMed  Google Scholar 

  38. Feldstein C, Weder AB. Orthostatic hypotension: a common, serious and underrecognized problem in hospitalized patients. J Am Soc Hypertens. 2012;6:27–39.

    Article  PubMed  Google Scholar 

  39. Gorelik O, Almoznino-Sarafian D, Litvinov V, et al. Seating-induced postural hypotension is common in older patients with decompensated heart failure and may be prevented by lower limb compression bandaging. Gerontology. 2009;55:138–44.

    Article  PubMed  Google Scholar 

  40. Heseltine D, Bramble MG. Loop diuretics cause less postural hypotension than thiazide diuretics in the frail elderly. Curr Med Res Opin. 1988;11:232–5.

    Article  CAS  PubMed  Google Scholar 

  41. Mehagnoul-Schipper DJ, Colier WN, Hoefnagels WH, et al. Effects of furosemide versus captopril on postprandial and orthostatic blood pressure and on cerebral oxygenation in patient’s ≥70 years of age with heart failure. Am J Cardiol. 2002;90:596–600.

    Article  CAS  PubMed  Google Scholar 

  42. Grijalva CG, Biaggioni I, Griffin MR, et al. Fludrocortisone is associated with a higher risk of all-cause hospitalizations compared with Midodrine in patients with orthostatic hypotension. J Am Heart Assoc. 2017;6(10):e006848.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Jones PK, Shaw BH, Raj SR. Orthostatic hypotension: managing a difficult problem. Expert Rev Cardiovasc Ther. 2015;13:1263–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ricci F, De Caterina R, Fedorowski A. Orthostatic hypotension: epidemiology, prognosis, and treatment In a small study OH was not seen with ACE inhibitor therapy with Captopril for two weeks. J Am Coll Cardiol. 2015;66:848–60.

    Article  PubMed  Google Scholar 

  45. Gronda E, Seravalle G, Brambilla G, et al. Chronic baroreflex activation effects on sympathetic nerve traffic, baroreflex function, and cardiac haemodynamics in heart failure: a proof-of-concept study. Eur J Heart Fail. 2014;16:977–83.

    Article  PubMed  Google Scholar 

  46. Hosokawa K, Ide T, Tobushi T, et al. Bionic baroreceptor corrects postural hypotension in rats with impaired baroreceptor. Circulation. 2012;126:1278–85.

    Article  PubMed  Google Scholar 

  47. Sabbah HN. Baroreflex activation for the treatment of heart failure. Curr Cardiol Rep. 2012;14:326–33.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Georgakopoulos D, Little WC, Abraham WT, et al. Chronic baroreflex activation: a potential therapeutic approach to heart failure with preserved ejection fraction. J Card Fail. 2011;17:167–78.

    Article  PubMed  Google Scholar 

  49. Gibbons CH, Schmidt P, Biaggioni I, et al. The recommendations of aconsensus panel for the screening, diagnosis, and treatment of neurogenic orthostatic hypotension and associated supine hypertension. J Neurol. 2017;264:1567–82.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Vanjraaij DJW, Jansen RWMM, Bouwels LHR, et al. Furosemide withdrawal improves postprandial hypotension in elderly patients with heart failure and preserved left ventricular systolic function. Arch Intern Med. 1999;159:1599–605.

    Article  Google Scholar 

  51. Vaitkevicius PV, Esserwein DM, Maynard AK, et al. Frequency and importance of postprandial blood pressure reduction in elderly nurshing home patients. Ann Intern Med. 1991;115:865–70.

    Article  CAS  PubMed  Google Scholar 

  52. Aronow WS, Ahn C. Postprandial hypotension in 499 elderly persons in a long- term care facility. J Am Geriatr Soc. 1994;42:930–2.

    Article  CAS  PubMed  Google Scholar 

  53. Mc Donald C, Pearce MS, Newton JL, et al. Modified criteria for carotid sinus hypersensitivity are associated with increased mortality in a population-based study. Europace. 2016;18:1101–7.

    Article  Google Scholar 

  54. Can I, Cytron J, Jhanjee R, et al. Neurally-mediated syncope. Minerva Med. 2009;100(4):275–92.

    CAS  PubMed  Google Scholar 

  55. Thomson HL, Atherton JJ, Khafagi FA, et al. Failure of reflex venocostriction during exercise in patients with vasovagal syncope. Circulation. 1996;93:953–9.

    Article  CAS  PubMed  Google Scholar 

  56. Bechir M, Binggeli C, Corti R, et al. Dysfunctional baroreflex regulation of sympathetic nerve activity in patients with vasovagal syncope. Circulation. 2003;107:1620–5.

    Article  PubMed  Google Scholar 

  57. Livanis EG, Kostopoulou A, Theodorakis GN, et al. Neurocardiogenic mechanisms of unexplained syncope in idiopathic dilated cardiomyopathy. Am J Cardiol. 2007;99:558–62.

    Article  PubMed  Google Scholar 

  58. Middlekauff HR, Stevenson WG, Stevenson LW, et al. Syncope in advanced heart failure: high risk of sudden death regardless of origin of syncope. J Am Coll Cardiol. 1993;21:110–6.

    Article  CAS  PubMed  Google Scholar 

  59. Kenney MJ, Seals DR. Post exercise hypotension. Key features, mechanisms, and clinical significance. Hypertension. 1993;22(5):653–64.

    Article  CAS  PubMed  Google Scholar 

  60. Alagiakrishnan K, Masaki K, Schatz I, et al. Blood pressure dysregulation syndrome: the case for control throughout the circadian cycle. Geriatrics. 2001;56(3):50–6.

    CAS  PubMed  Google Scholar 

  61. Iskandrian AS, Kegel JG, Lemlek J, et al. Mechanism of exercise-induced hypotension in coronary artery, disease. Am J Cardiol. 1992;69(19):1517–20.

    Article  CAS  PubMed  Google Scholar 

  62. Rondon MUPB, Alves MJNN, Braga AMFW, et al. Post exerciseblood pressure reduction in elderly hypertensive patients. J Am Col Cardiol. 2002;39(4):676–82.

    Article  Google Scholar 

  63. Teixeira L, Ritti-Dias RM, Tinucci T, et al. Post-concurrent exercise hemodynamics and cardiac autonomic modulation. Eur J Appl Physiol. 2011;111(9):2069–78.

    Article  PubMed  Google Scholar 

  64. Antonicelli R, Spazzafumo L, Scalvini S, et al. Exercise: a “new drug” for elderly patients with chronic heart failure. Aging (Albany NY). 2016;8:860–72.

    Article  Google Scholar 

  65. Kitzman DW, Brubaker PH, Morgan TM, et al. Exercise training in older patients with heart failure and preserved ejection fraction: a randomized, controlled, single-blind trial. Circ Heart Fail. 2010;3:659–67.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013 Oct 15;62(16):e147–239.

    Article  PubMed  Google Scholar 

  67. Halliwill JR, Buck TM, Lacewell AN, et al. Post exercise hypotension and sustained post exercise vasodilatation: what happens after we exercise? Exp Physiol. 2013;98(1):7–18.

    Article  PubMed  Google Scholar 

  68. Hara K, Floras JS. After-effects of exercise on haemodynamics and muscle sympathetic nerve activity in young patients with dilated cardiomyopathy. Heart. 1996;75(6):602–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Roh J, Rhee J, Chaudhari V, et al. The role of exercise in cardiac aging: from physiology to molecular mechanisms. Circ Res. 2016;118:279–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Puvi-Rajasingham S, Smith GD, Akinola A, et al. Hypotensive and regional haemodynamic effects of exercise, fasted and after food, in human sympathetic denervation. Clin Sci (Lond). 1998;94(1):49–55.

    Article  CAS  Google Scholar 

  71. Kastrup J, Wroblewski H, Sindrup J, et al. Diurnal blood pressure profile in patients with severe congestive heart failure. Dippers and non-dippers. Scand J Clin Lab Invest. 1993;53:577–83.

    Article  CAS  PubMed  Google Scholar 

  72. Rodrigues JCL, Amadu AM, Ghosh Dastidar A, et al. Nocturnal dipping status and left ventricular hypertrophy: a cardiac magnetic resonance imaging study. J Clin Hypertens. 2018;20(4):784–93.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alagiakrishnan, K., Mah, D., Ahmed, A. (2020). Hypotensive Syndromes and Heart Failure. In: Alagiakrishnan, K., Banach, M. (eds) Hypotensive Syndromes in Geriatric Patients. Springer, Cham. https://doi.org/10.1007/978-3-030-30332-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30332-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30331-0

  • Online ISBN: 978-3-030-30332-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics