Skip to main content

FPGA Implementation of Modified Swarm Optimization Based Control Strategy for a Mobile Robot

  • Conference paper
  • First Online:
Applications of Robotics in Industry Using Advanced Mechanisms (ARIAM 2019)

Part of the book series: Learning and Analytics in Intelligent Systems ((LAIS,volume 5))

  • 402 Accesses

Abstract

In this paper the auto control strategy for a mobile robot is provided with the novel algorithm of modified particle swarm optimization algorithm (MPSO). Original taken image is preprocessed and then the features are extracted. The preprocessing involves the two important characters of resizing and RGB to gray conversion for getting the gray level image and avoid the colour image. Then the modified sobel edge detection algorithm is used to show the lines, and curves. After detecting the edges, filters are used to remove the unwanted noise. The simulation is done in MATLAB and Xilinx environment. The power, frequency, delays, and the logic utilization is measured. Then the result is compared with existing particle swarm optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Horanzy J (2006) Method and apparatus for configuring a programmable logic device. United States patent US 7,146,598

    Google Scholar 

  2. Dawood AS, Visser SJ, Williams JA (2002) Reconfigurable FPGAs for real time image processing in space. In: 2002 14th international conference on digital signal processing, DSP 2002. IEEE, vol 2, pp 845–848

    Google Scholar 

  3. Sims O (2017) Efficient implementation of video processing algorithms on FPGA (Doctoral dissertation, University of Glasgow)

    Google Scholar 

  4. Maxim V, Zidek K (2012) Design of high performance multimedia control system for UAV/UGV based on SoC/FPGA Core. Procedia Eng 1(48):402–408

    Article  Google Scholar 

  5. Chang C (2005) Design and applications of a reconfigurable computing system for high performance digital signal processing (Doctoral dissertation, University of California, Berkeley)

    Google Scholar 

  6. Brown SD, Francis RJ, Rose J, Vranesic ZG (1997) Field-programmable gate array. Kluwer Academic Publishers

    Google Scholar 

  7. Zhao J, Zhu S, Huang X (2013) Real-time traffic sign detection using SURF features on FPGA. In: High performance extreme computing conference (HPEC). IEEE, pp 1–6

    Google Scholar 

  8. Kumar A, Rastogi P, Srivastava P (2015) Design and FPGA implementation of DWT, image text extraction technique. Procedia Comput Sci 1(57):1015–1025

    Article  Google Scholar 

  9. Li L, Wyrwicz AM (2015) Design of an MR image processing module on an FPGA chip. J Magn Reson 255:51–58

    Article  Google Scholar 

  10. Lopez-Ramirez M, Ledesma-Carrillo LM, Cabal-Yepez E, Botella G, Rodriguez-Donate C, Ledesma S (2017) FPGA-based methodology for depth-of-field extension in a single image. Digital Signal Process 70(C):14–23

    Article  Google Scholar 

  11. Kotyza J, Kasik V (2016) Image processing of composite video with FPGA programmable logic. IFAC-PapersOnLine 49(25):482–486

    Article  Google Scholar 

  12. Allin Christe S, Vignesh M, Kandaswamy A (2011) An efficient FPGA implementation of MRI image filtering and tumour characterization using Xilinx system generator. Int J VLSI Des Commun Syst (VLSICS) 2(4)

    Article  Google Scholar 

  13. Elamaran V, Aswini A, Niraimathi V, Kokilavani D (2012) FPGA implementation of audio enhancement using adaptive LMS Filters. J Artif Intell 5(4):221–226

    Article  Google Scholar 

  14. Turcza P, Duplaga M (2011) Low power FPGA-based image processing core for wireless capsule endoscopy. Sensors Actuators A Phys 172(2):552–560

    Article  Google Scholar 

  15. Nieto J, Sanz D, Guillén P, Esquembri S, de Arcas G, Ruiz M, Vega J, Castro R (2016) High performance image acquisition and processing architecture for fast plant system controllers based on FPGA and GPU. Fusion Eng Des 15(112):957–960

    Article  Google Scholar 

  16. Zarifi T, Malek M (2014) FPGA implementation of image processing technique for blood samples characterization. Comput Electr Eng 40(5):1750–1757

    Article  Google Scholar 

  17. Yu Y, Kwok N, Ha QP (2009) FGPA-based real-time color tracking for robotic formation control. In: In international symposium on automation and robotics in construction 2009. IAARC-University of Texas at Austin

    Google Scholar 

  18. Ha QP, Yu YH, Quang NK (2012) FPGA-based cooperative control of indoor multiple robots. Int J Adv Mechatron Syst 4(5–6):248–259

    Article  Google Scholar 

  19. Commuri S, Tadigotla V, Sliger L (2007) Task-based hardware reconfiguration in mobile robots using FPGAs. J Intell Robot Syst 49(2):111–134

    Article  Google Scholar 

  20. Belean B, Borda M, Le Gal B, Terebes R (2012) FPGA based system for automatic cDNA microarray image processing. Comput Med Imaging Graph 36(5):419–429

    Article  Google Scholar 

  21. Irwansyah A, Ibraheem OW, Hagemeyer J, Porrmann M, Rueckert U (2017) FPGA-based multi-robot tracking. J Parallel Distrib Comput. 30(107):146–161

    Article  Google Scholar 

  22. Xu S, Ye P, Han S, Sun H, Jia Q (2016) Road lane modeling based on RANSAC algorithm and hyperbolic model. In: 2016 3rd international conference on systems and informatics (ICSAI), November 2019. IEEE, pp 97–101

    Google Scholar 

  23. Zhang Y, Zhao Y, Fu X, Xu J (2016) A feature extraction method of the particle swarm optimization algorithm based on adaptive inertia weight and chaos optimization for Brillouin scattering spectra. Optics Commun 1(376):56–66

    Article  Google Scholar 

  24. Trelea IC (2003) The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf Process Lett 85(6):317–325

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandipan Pine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pine, S., Choudhury, B.B. (2020). FPGA Implementation of Modified Swarm Optimization Based Control Strategy for a Mobile Robot. In: Nayak, J., Balas, V., Favorskaya, M., Choudhury, B., Rao, S., Naik, B. (eds) Applications of Robotics in Industry Using Advanced Mechanisms. ARIAM 2019. Learning and Analytics in Intelligent Systems, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-030-30271-9_26

Download citation

Publish with us

Policies and ethics