Skip to main content

Learning Regularization Parameters of Radial Basis Functions in Embedded Likelihoods Space

  • Conference paper
  • First Online:
Progress in Artificial Intelligence (EPIA 2019)

Abstract

Neural networks with radial basis activation functions are typically trained in two different phases: the first consists in the construction of the hidden layer, while the second consists in finding the output layer weights. Constructing the hidden layer involves defining the number of units in it, as well as their centers and widths. The training process of the output layer can be done using least squares methods, usually setting a regularization term. This work proposes an approach for building the whole network using information extracted directly from the projected training data in the space formed by the likelihoods functions. One can, then, train RBF networks for pattern classification with minimal external intervention.

Thanks to funding agencies CNPq, CAPES and FAPEMIG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartlett, P.L.: For valid generalization the size of the weights is more important than the size of the network. In: Advances in Neural Information Processing Systems, pp. 134–140 (1997)

    Google Scholar 

  2. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, COLT 1992, pp. 144–152. ACM, New York (1992). http://doi.acm.org/10.1145/130385.130401

  3. Chen, S., Cowan, C.F., Grant, P.M.: Orthogonal least squares learning algorithm for radial basis function networks. EEE Trans. Neural Netw. 2(2), 302–309 (1991)

    Article  Google Scholar 

  4. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  5. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7(Jan), 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Geman, S., Bienenstock, E., Doursat, R.: Neural networks and the bias/variance dilemma. Neural Comput. 4(1), 1–58 (1992)

    Article  Google Scholar 

  7. Hess, K.R., et al.: Pharmacogenomic predictor of sensitivity to preoperative chemotherapy with paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide in breast cancer. J. Clin. Oncol. 24(26), 4236–4244 (2006)

    Article  Google Scholar 

  8. James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical Learning, vol. 112. Springer, Heidelberg (2013). https://doi.org/10.1007/978-1-4614-7138-7

    Book  MATH  Google Scholar 

  9. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics, pp. 281–297. University of California Press, Berkeley (1967)

    Google Scholar 

  10. Mao, K.: RBF neural network center selection based on fisher ratio class separability measure. IEEE Trans. Neural Netw. 13(5), 1211–1217 (2002)

    Article  Google Scholar 

  11. Menezes, M., Torres, L., Braga, A.: Otimização da largura de kernels rbf para máquinas de vetores de suporte: Uma abordagem baseada em estimativa de densidades. In: XIII Congresso Brasileiro de Inteligência Computacional (2017)

    Google Scholar 

  12. Montgomery, D.C., Runger, G.C.: Applied Statistics and Probability for Engineers. Wiley, Hoboken (2010)

    MATH  Google Scholar 

  13. Oh, S.K., Kim, W.D., Pedrycz, W., Joo, S.C.: Design of K-means clustering-based polynomial radial basis function neural networks (pRBF NNs) realized with the aid of particle swarm optimization and differential evolution. Neurocomputing 78(1), 121–132 (2012)

    Article  Google Scholar 

  14. Rosenblatt, M.: Remarks on some nonparametric estimates of a density function. Ann. Math. Stat. 27, 832–837 (1956)

    Article  MathSciNet  Google Scholar 

  15. Silverman, B.W.: Density Estimation for Statistics and Data Analysis, vol. 26. CRC Press, Boca Raton (1986)

    Book  Google Scholar 

  16. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Heidelberg (2013). https://doi.org/10.1007/978-1-4757-3264-1

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murilo Menezes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Menezes, M., Torres, L.C.B., Braga, A.P. (2019). Learning Regularization Parameters of Radial Basis Functions in Embedded Likelihoods Space. In: Moura Oliveira, P., Novais, P., Reis, L. (eds) Progress in Artificial Intelligence. EPIA 2019. Lecture Notes in Computer Science(), vol 11805. Springer, Cham. https://doi.org/10.1007/978-3-030-30244-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30244-3_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30243-6

  • Online ISBN: 978-3-030-30244-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics