Skip to main content

Well Quasi-orderings and Roots of Polynomials in a Hahn Field

  • Chapter
  • First Online:
  • 449 Accesses

Part of the book series: Trends in Logic ((TREN,volume 53))

Abstract

Let G be a divisible ordered Abelian group, and let K be a field. The Hahn field K((G)) is a field of formal power series, with terms corresponding to elements in a well ordered subset of G and the coefficients coming from K. Ideas going back to Newton show that if K is either algebraically closed of characteristic 0, or real closed, then the same is true for K((G)). Results of Mourgues and Ressayre [11] led us to look for bounds on the lengths of roots of a polynomial, in terms of the lengths of the coefficients [5, 6]. In the present paper, we give an introduction to Hahn fields, we indicate how well quasi-orderings arise when we try to bound the lengths of sums and products, and we re-work, in a more general way, a technical theorem from [6] that gives information on the root-taking process.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ash, C. J., & Knight, J. F. (2000). Computable structures and the hyperarithmetical hierarchy. Elsevier.

    Google Scholar 

  2. Carruth, P. (1942). Arithmetic of ordinals with application to the theory of ordered abelian groups. Bulletin of the American Mathematical Society, 48, 262–271.

    Article  Google Scholar 

  3. deJongh, D., & Parikh, R. (1977). Well partial orderings and hierarchies. Proceedings Koninklijke Nederlandse Akademie Sci. Series A, 80, 195–207.

    Google Scholar 

  4. Hahn, H. (1995). Über die nichtarchimedischen Größensysteme. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, Wien, Mathematisch-Naturwissenschaftliche Klasse (Wien. Ber.) vol. 116(1907), pp. 601–655, reprinted in H. Hahn, Gesammelte Abhandlungen I. Springer.

    Google Scholar 

  5. Knight, J. F., & Lange, K. (2013). Complexity of structures associated with real closed fields. Proceedings of the London Mathematical Society, 107, 177–197.

    Article  Google Scholar 

  6. Knight, J. F., & Lange, K. (2019). Lengths of developments in \(K((G))\). Selecta Mathematica, 25.

    Google Scholar 

  7. Knight, J. F., & Lange, K., Truncation-closed subfields of a Hahn field. pre-print.

    Google Scholar 

  8. Kříš, I., & Thomas, R., Ordinal types in Ramsey Theory and well-partial-ordering theory. In Mathematics of Ramsey Theory, ed. by J. Nešetřil & V. Rödl, pp. 57–95.

    Google Scholar 

  9. MacLane, S. (1939). The universality of formal power series fields. Bulletin of the American Mathematical Society, 45, 888–890.

    Article  Google Scholar 

  10. Mal’tsev, A. L. (1948). On embedding of group algebras in a division algebra. (Russian) Doklady Akademii Nauk SSSR (N.S.), 60, 1499–1501.

    Google Scholar 

  11. Mourgues, M. H., & Ressayre, J.-P. (1993). Every real closed field has an integer part. Journal of Symbolic Logic, 58, 641–647.

    Article  Google Scholar 

  12. Neumann, B. H. (1949). On ordered division rings. Transactions of the American Mathematical Society, 66, 202–252.

    Article  Google Scholar 

  13. Newton, I. (1960). Letter to Oldenburg dated 1676 Oct 24 (pp. 126–127). The Correspondence of Isaac Newton II: Cambridge University Press.

    Google Scholar 

  14. Pohlers, W. (1980). Proof theory: An introduction. Berlin: Springer.

    Google Scholar 

  15. Puiseux, V. A. (1850). Recherches sur les fonctions algébriques. Journal de Mathématiques Pures et Appliquées, 15, 365–480.

    Google Scholar 

  16. Puiseux, V. A. (1851). Nouvelles recherches sur les fonctions algébriques. Journal de Mathématiques Pures et Appliquées, 16, 228–240.

    Google Scholar 

  17. Ressayre, J.-P. (1973). Boolean models and infinitary first order languages. Annals of Mathematical Logic, 6, 41–92.

    Article  Google Scholar 

  18. Ressayre, J.-P. (1977). Models with compactness properties relative to an admissible language. Annals of Mathematical Logic, 11, 31–55.

    Article  Google Scholar 

  19. Schmidt, D. (1978). Associative ordinal functions, well partial orderings, and a problem of Skolem. Z. Math. Logik Grundlagen Math., 24, 297–302.

    Article  Google Scholar 

  20. Schmidt, D. (1979). Well partial orderings and their maximal order types. Heidelberg: Habilitationsschrift.

    Google Scholar 

  21. Schmidt, D. (1981). The relation between the height of a well-founded partial ordering and the order types of its chains and antichains. Journal of Combinatorial Theory, Series B, 31, 183–189.

    Article  Google Scholar 

  22. Starchenko, S., Notes on roots of polynomials.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia F. Knight .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Knight, J.F., Lange, K. (2020). Well Quasi-orderings and Roots of Polynomials in a Hahn Field. In: Schuster, P., Seisenberger, M., Weiermann, A. (eds) Well-Quasi Orders in Computation, Logic, Language and Reasoning. Trends in Logic, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-030-30229-0_5

Download citation

Publish with us

Policies and ethics