Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSPOLIMI))

  • 230 Accesses

Abstract

The physical models which will be considered throughout the book, describing the dynamics of beams and degenerate plates modeling suspension bridges, are introduced. They involve different kinds of nonlinear (nonlocal and local) energies of bending, stretching and displacement type behaving superquadratically. A physical interpretation of the different nonlinear terms considered is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ammann OH, von Kármán T, Woodruff GB (1941) The failure of the Tacoma Narrows Bridge. Federal Works Agency

    Google Scholar 

  2. Augusti G, Sepe V (2001) A “deformable section” model for the dynamics of suspension bridges. Part I: model and linear response. Wind Struct 4:1–18

    Google Scholar 

  3. Bartoli G, Spinelli P (1993) The stochastic differential calculus for the determination of structural response under wind. J Wind Eng Ind Aerodyn 48:175–188

    Article  Google Scholar 

  4. Benci V, Fortunato D, Gazzola F (2017) Existence of torsional solitons in a beam model of suspension bridge. Arch Ration Mech Anal 226:559–585

    Article  MathSciNet  Google Scholar 

  5. Berchio E, Gazzola F (2015) A qualitative explanation of the origin of torsional instability in suspension bridges. Nonlinear Anal TMA 121:54–72

    Article  MathSciNet  Google Scholar 

  6. Burgreen D (1951) Free vibrations of a pin-ended column with constant distance between pin ends. J Appl Mech 18:135–139

    Google Scholar 

  7. Cazenave T, Haraux A, Weissler FB (1993) A class of nonlinear, completely integrable abstract wave equations. J Dyn Differ Equ 5:129–154

    Article  MathSciNet  Google Scholar 

  8. Cazenave T, Weissler FB (1995) Asymptotically periodic solutions for a class of nonlinear coupled oscillators. Port Math 52:109–123

    MathSciNet  MATH  Google Scholar 

  9. Cazenave T, Weissler FB (1996) Unstable simple modes of the nonlinear string. Quart Appl Math 54:287–305

    Article  MathSciNet  Google Scholar 

  10. Chueshov I, Lasiecka I (2010) Von Kármán evolution equations. Well-posedness and long-time dynamics. Springer monographs in mathematics. Springer, New York

    Google Scholar 

  11. Ciarlet PG, Rabier P (1980) Les équations de von Kármán. Studies in mathematics and its applications 27. Springer, Berlin

    Book  Google Scholar 

  12. Garrione M, Gazzola F (2020) Linear theory for beams with intermediate piers. Commun Contemp Math

    Google Scholar 

  13. Gazzola F, Wang Y (2015) Modeling suspension bridges through the von Kármán quasilinear plate equations, Contributions to nonlinear elliptic equations and systems, 269–297, Progr. Nonlinear Differential Equations Appl., 86, Birkhäuser/Springer

    Google Scholar 

  14. Ghisi M, Gobbino M, Haraux A (2018) An infinite dimensional Duffing-like evolution equation with linear dissipation and an asymptotically small source term. Nonlinear Anal Real World Appl 43:167–191

    Article  MathSciNet  Google Scholar 

  15. Hartman Mather B. https://a.msn.com/r/2/BBOvA55?m=nl-nl&referrerID=InAppShare&ocid=Nieuws (via Viral Hog, video)

  16. Holubová G, Matas A (2003) Initial-boundary value problem for nonlinear string-beam system. J Math Anal Appl 288:784–802

    Article  MathSciNet  Google Scholar 

  17. Luco JL, Turmo J (2010) Effect of hanger flexibility on dynamic response of suspension bridges. J Eng Mech 136:1444–1459

    Article  Google Scholar 

  18. Pittel BG, Yakubovich VA (1969) A mathematical analysis of the stability of suspension bridges based on the example of the Tacoma bridge (Russian). Vestnik Leningrad Univ 24:80–91

    Google Scholar 

  19. Plaut RH, Davis FM (2007) Sudden lateral asymmetry and torsional oscillations of section models of suspension bridges. J Sound Vib 307:894–905

    Article  Google Scholar 

  20. Podolny W (2011) Cable-suspended bridges. In: Brockenbrough RL, Merritt FS (eds) Structural steel designer’s handbook: AISC, AASHTO, AISI, ASTM, AREMA, and ASCE-07 design standards, 5th edn. McGraw-Hill, New York

    Google Scholar 

  21. von Kármán T (1910) Festigkeitsprobleme im maschinenbau. In: Encyclopaedia der Mathematischen Wissenschaften, vol IV/4 C. Springer, Leipzig, pp 348–352

    Google Scholar 

  22. Woinowsky-Krieger S (1950) The effect of an axial force on the vibration of hinged bars. J Appl Mech 17:35–36

    MathSciNet  MATH  Google Scholar 

  23. Yakubovich VA, Starzhinskii VM (1975) Linear differential equations with periodic coefficients. Wiley, New York (Russian original in Izdat. Nauka, Moscow, 1972)

    Google Scholar 

  24. YouTube (1940) Tacoma Narrows Bridge collapse, video. http://www.youtube.com/watch?v=3mclp9QmCGs

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Gazzola .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Garrione, M., Gazzola, F. (2019). The Physical Models. In: Nonlinear Equations for Beams and Degenerate Plates with Piers. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-030-30218-4_1

Download citation

Publish with us

Policies and ethics