Skip to main content

On Secure Cooperative Non-orthogonal Multiple Access Network with RF Power Transfer

  • Conference paper
  • First Online:

Abstract

In this paper, we investigate the secrecy performance of the cooperative non-orthogonal multiple access (NOMA) network with radio frequency (RF) power transfer. Specifically, this considered network consists of one RF power supply station, one source and multiple energy constrained NOMA users in the presence of a passive eavesdropper. The better user helps the source to forward the message to worse user by using the energy harvested from the power station. The expression of secrecy outage probability for the scenario of wiretaping from user-to-user link is derived by using the statistical characteristics of signal-to-noise ratio (SNR) and signal-to-interference-plus-noise ratio (SINR) of transmission links. In order to understand more detail about the behaviour of this considered system, the numerical results are provided according to the system key parameters, such as the transmit power, number of users, time switching ratio and power allocation coefficients. The simulation results are also provided to confirm the correctness of our analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wu, H., Wang, C., Tzeng, N.F.: Novel self-configurable positioning technique for multihop wireless networks. IEEE/ACM Trans. Netw. 13(3), 609–621 (2005)

    Article  Google Scholar 

  2. Kim, K.J., Duong, T.Q., Poor, H.V.: Performance analysis of cyclic prefixed single-carrier cognitive amplify-and-forward relay systems. IEEE Trans. Wirel. Commun. 12(1), 195–205 (2013)

    Article  Google Scholar 

  3. Thanh, T.L., Hoang, T.M.: Cooperative spectrum-sharing with two-way AF relaying in the presence of direct communications. EAI Endorsed Trans. Ind. Netw. Intell. Syst. 5(14), 1–9 (2018)

    Google Scholar 

  4. Ding, Z., Peng, M., Poor, H.V.: Cooperative non-orthogonal multiple access in 5G systems. IEEE Commun. Lett. 19(8), 1462–1465 (2015)

    Article  Google Scholar 

  5. Do, N.T., Costa, D.B.D., Duong, T.Q., An, B.: A BNBF user selection scheme for NOMA-based cooperative relaying systems with SWIPT. IEEE Commun. Lett. 21(3), 664–667 (2017)

    Article  Google Scholar 

  6. Islam, S.M.R., Avazov, N., Dobre, O.A., Kwak, K.S.: Power-domain non-orthogonal multiple access (NOMA) in 5G systems: potentials and challenges. IEEE Commun. Surv. Tutor. 19(2), 721–742 (2017)

    Article  Google Scholar 

  7. Nguyen, V.D., Tuan, H.D., Duong, T.Q., Poor, H.V., Shin, O.S.: Precoder design for signal superposition in MIMO-NOMA multicell networks. IEEE J. Sel. Areas Commun. 35(12), 2681–2695 (2017)

    Article  Google Scholar 

  8. Tran, D.D., Tran, H.V., Ha, D.B., Kaddoum, G.: Cooperation in NOMA networks under limited user-to-user communications: solution and analysis. In: IEEE Wireless Communications and Networking Conference (WCNC), Barcelona, Spain, 15–18 April 2018 (2018)

    Google Scholar 

  9. Lee, S., Duong, T.Q., da Costa, D.B., Ha, D.B., Nguyen, S.Q.: Underlay cognitive radio networks with cooperative non-orthogonal multiple access. IET Commun. 12(3), 359–366 (2018)

    Article  Google Scholar 

  10. Do, T.N., da Costa, D.B., Duong, T.Q., An, B.: Improving the performance of cell-edge users in NOMA systems using cooperative relaying. IEEE Trans. Commun. 66(5), 1883–1901 (2018)

    Article  Google Scholar 

  11. Do, T.N., da Costa, D.B., Duong, T.Q., An, B.: Improving the performance of cell-edge users in MISO-NOMA systems using TAS and SWIPT-based cooperative transmissions. IEEE Trans. Green Commun. Netw. 2(1), 49–62 (2018)

    Article  Google Scholar 

  12. Tuan, H.D., Nasir, A.A., Nguyen, H.H., Duong, T.Q., Poor, H.V.: Non-orthogonal multiple access with improper gaussian signaling. IEEE J. Sel. Topics Signal Process. 13, 496–507 (2019)

    Article  Google Scholar 

  13. Nasir, A.A., Zhou, X., Durrani, S., Kennedy, R.A.: Relaying protocols for wireless energy harvesting and information processing. IEEE Trans. Wireless Commun. 12(7), 3622–3636 (2013)

    Article  Google Scholar 

  14. Ha, D.B., Tran, D.D., Tran-Ha, V., Hong, E.K.: Performance of amplify-and-forward relaying with wireless power transfer over dissimilar channels. Elektronika ir Elektrotechnika J. 21(5), 90–95 (2015)

    Google Scholar 

  15. Du, G., Xiong, K., Qiu, Z.: Outage analysis of cooperative transmission with energy harvesting relay: time switching versus power splitting. Math. Probl. Eng. 2015, 1–9 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Chen, X., Zhang, Z., Chen, H.H., Zhang, H.: Enhancing wireless information and power transfer by exploiting multi- antenna techniques. IEEE Commun. Mag. 53(4), 133–141 (2015)

    Article  Google Scholar 

  17. Cvetkovic, A., Blagojevic, V., Ivanis, P.: Performance analysis of nonlinear energy-harvesting DF relay system in interference-limited Nakagami-m fading environment. ETRI J. 39(6), 803–812 (2017)

    Article  Google Scholar 

  18. Xu, K., Shen, Z., Wang, Y., Xia, X.: Beam-domain hybrid time-switching and power splitting SWIPT in full-duplex massive MIMO system. EURASIP J. Wirel. Commun. Netw., 1–21 (2018)

    Google Scholar 

  19. Lu, X., Wang, P., Niyato, D., Kim, D.I., Han, Z.: Wireless networks with RF energy harvesting: a contemporary survey. IEEE Commun. Surv. Tutor. 17(2), 757–789 (2014)

    Article  Google Scholar 

  20. Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28, 656–715 (1949)

    Article  MathSciNet  Google Scholar 

  21. Wyner, A.: The wire-tap channel. Bell Syst. Tech. J. 54(8), 1355–1387 (1975)

    Article  MathSciNet  Google Scholar 

  22. Bloch, M., Barros, J., Rodrigues, M.R., McLaughlin, S.W.: Wireless information-theoretic security. IEEE Trans. Inf. Tech. 54(6), 2515–2534 (2008)

    Article  MathSciNet  Google Scholar 

  23. Liu, Y., Qin, Z., Elkashlan, M., Gao, Y., Hanzo, L.: Enhancing the physical layer security of nonorthogonal multiple access in large-scale networks. IEEE Trans. Wirel. Commun. 16(3), 1656–1672 (2017)

    Article  Google Scholar 

  24. Tran, D.D., Ha, D.B.: Secrecy performance analysis of QoS-based non-orthogonal multiple access networks over nakagami-m fading. In: The International Conference on Recent Advances in Signal Processing, Telecommunications and Computing (SigTelCom), HCMC, Vietnam (2018)

    Google Scholar 

  25. Lei, H., Zhang, J., Park, K.H., Xu, P., Ansari, I.S., Pan, G.: On secure NOMA systems with transmit antenna selection schemes. IEEE Access 5, 17450–17464 (2017)

    Article  Google Scholar 

  26. Lv, L., Ding, Z., Ni, Q., Chen, J.: Secure MISO-NOMA transmission with artificial noise. IEEE Trans. Veh. Technol. 67(7), 6700–6705 (2018)

    Article  Google Scholar 

  27. Chen, J., Yang, L., Alouini, M.S.: Physical layer security for cooperative NOMA systems. IEEE Trans. Veh. Technol. 67(5), 4645–4649 (2018)

    Article  Google Scholar 

  28. Kieu, T.N., Tran, D.D., Ha, D.B., Voznak, M.: On secure QoS-based NOMA networks with multiple antennas and eavesdroppers over Nakagami-m fading. IETE J. Res., 1–13 (2019)

    Google Scholar 

  29. Tran, D.D., Tran, H.V., Ha, D.B., Kaddoum, G.: Secure transmit antenna selection protocol for MIMO NOMA networks over Nakagami-m channels. IEEE Syst. J., 1–12 (2019)

    Google Scholar 

  30. Men, J., Ge, J.: Performance analysic of non-orthogonal multiple access in downlink cooperative network. IET Commun. 9(18), 2267–2273 (2015)

    Article  Google Scholar 

  31. Gradshteyn, I., Ryzhik, I.: Table of Integrals, Series, and Products. Elsevier Academic Press, Cambridge (2007)

    MATH  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 102.04-2017.301.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dac-Binh Ha .

Editor information

Editors and Affiliations

Appendices

Appendix A - Proof of Proposition 1

Here, we derive the expression of the joint CDF of \(\gamma _{mn}\) and \(\gamma _{D_mE}\) as follows

$$\begin{aligned} F_{\gamma _{mn},\gamma _{D_mE}}(x,y)= & {} \int _{0}^{\infty }{F_{\gamma _{mn},\gamma _{D_mE}|X_1}(x,y|z)f_{X_1}(z)dz} \nonumber \\= & {} \int _{0}^{\infty }{F_{\gamma _{mn}|X_1}(x|z)F_{\gamma _{D_mE}|X_1}(y|z)f_{X_1}(z)dz} \nonumber \\= & {} \int _{0}^{\infty }\left( 1-e^{-\frac{x}{c_1\lambda _{mn}z}}\right) \left( 1-e^{-\frac{y}{c_2\lambda _{D_mE}z}}\right) \frac{1}{\lambda _{PD_m}}e^{-\frac{z}{\lambda _{PD_m}}}dz \nonumber \\= & {} 1-u\mathcal {K}_1(u)-v\mathcal {K}_1(v)+t\mathcal {K}_1(t), \end{aligned}$$
(17)

where \(u=2\sqrt{\frac{x}{c_1\lambda _{PD_m}\lambda _{mn}}}\), \(v=2\sqrt{\frac{y}{c_2\lambda _{PD_m}\lambda _{D_mE}}}\), \(t=2\sqrt{\frac{c_2\lambda _{D_mE}x+c_1\lambda _{mn}y}{c_1c_2\lambda _{PD_m}\lambda _{mn}\lambda _{D_mE}}}\). This concludes the proof.

Appendix B - Proof of Theorem 1

By means of (15), \(\varPhi _1\) and \(\varPhi _2\) are respectively calculated as follows

$$\begin{aligned} \varPhi _1= & {} \Pr \left( \frac{b_2X_2}{b_1X_2 + 1}<\gamma _t\right) = F_{X_2}\left( \frac{\gamma _t}{b_2 - b_1\gamma _t}\right) \\= & {} \left\{ {\begin{array}{*{20}{c}} {\frac{M!}{(M-m)!(m-1)!}\overset{m-1}{\underset{k=0}{\sum }}(-1)^k C^{m-1}_k\frac{1}{M-m+k+1}\left[ 1 - e^{- \frac{\gamma _t(M-m+k+1)}{(b_2 - b_1\gamma _t)\lambda _{SDm}}}\right] ,\mathrm{{ }}}&{}{{\gamma _t} < {\frac{a_n}{a_m}}} \\ {1,\mathrm{{ }}}&{}{{\gamma _t} > \frac{a_n}{a_m}} \end{array}} \right. \end{aligned}$$
$$\begin{aligned} \varPhi _2= & {} \Pr \left( \frac{1+\gamma _{mn}}{1 + \gamma _{D_mE}}< \varOmega _S\right) = \int _{0}^{\infty } \left[ \frac{\partial F_{\gamma _{mn},\gamma _{D_mE}}(x,y)}{\partial y}\right] _{x=\varOmega _S(1+y)-1}dy \nonumber \\= & {} -\frac{2}{c_2 \lambda _{PD_m} \lambda _{D_mE}} \int _{0}^{\infty } \mathcal {K}_0\left( \sqrt{\frac{y}{c_2\lambda _{PD_m}\lambda _{D_mE}}}\right) dy \nonumber \\&+\frac{2}{c_2 \lambda _{PD_m} \lambda _{D_mE}} \int _{0}^{\infty } \mathcal {K}_0\left( \sqrt{\frac{(c_1\lambda _{mn}+c_2\lambda _{D_mE}\varOmega _S)y+c_2\lambda _{D_mE}(\varOmega _S-1)}{c_1c_2\lambda _{PD_m}\lambda _{mn}\lambda _{D_mE}}}\right) dy \nonumber \\= & {} \int _{0}^{\infty }v\mathcal {K}_0(v)dv - \frac{2c_1\lambda _{mn}}{c_1\lambda _{mn}+c_2\lambda _{D_mE}\varOmega _S} \int _{2\sqrt{\frac{\varOmega _S-1}{c_1\lambda _{PD_m}\lambda _{mn}}}}^{\infty } s\mathcal {K}_0(s)ds \nonumber \\= & {} 1-\frac{2c_1 \lambda _{mn}}{c_1\lambda _{mn}+c_2\lambda _{D_mE}\varOmega _S} \sqrt{\frac{\varOmega _S-1}{c_1\lambda _{PD_m}\lambda _{mn}}} \mathcal {K}_1\left( 2\sqrt{\frac{\varOmega _S-1}{c_1\lambda _{PD_m}\lambda _{mn}}}\right) , \end{aligned}$$
(18)

where \(\varOmega _S=2^{\frac{2R_S}{1-\alpha }}\), \(s = \sqrt{\frac{(c_1\lambda _{mn}+c_2\lambda _{D_mE}\varOmega _S)y+c_2\lambda _{D_mE}(\varOmega _S-1)}{c_1c_2\lambda _{PD_m}\lambda _{mn}\lambda _{D_mE}}}\).

This is the end of our proof.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ha, DH., Ha, DB., Voznak, M. (2019). On Secure Cooperative Non-orthogonal Multiple Access Network with RF Power Transfer. In: Duong, T., Vo, NS., Nguyen, L., Vien, QT., Nguyen, VD. (eds) Industrial Networks and Intelligent Systems. INISCOM 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 293. Springer, Cham. https://doi.org/10.1007/978-3-030-30149-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30149-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30148-4

  • Online ISBN: 978-3-030-30149-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics