Skip to main content

Quantum Based Networks: Analysis of Quantum Teleportation Protocol and Entanglement Swapping (Workshop Paper)

  • Conference paper
  • First Online:
Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2019)

Abstract

In this paper we consider the quantum teleportation and entanglement swapping protocols used in quantum based networks for passing information between a sender and receiver. For the teleportation protocol we observe and identify relationships that exist between Einstein-Podolsky-Rosen (EPR) Bell states employed as quantum resources, measured sender values and the gates employed at the receiver side. For the entanglement swapping protocol we consider input and output EPR states and the relationship between the two. We include a review of the concepts and our findings from the analysis carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meet IBM Q. https://www.research.ibm.com/ibm-q/

  2. Quantum A.I. research at google. https://research.google.com/pubs/QuantumAI.html/

  3. Quantum information. https://www.toshiba.eu/eu/Cambridge-Research-Laboratory/Quantum-Information/

  4. Qutech quantum institute enters into collaboration with Intel. https://www.tudelft.nl/en/2015/tu-delft/qutech-quantum-institute-enters-into-collaboration-with-intel

  5. Station q - worldwide consortium for the advancement of topological quantum computation. https://stationq.microsoft.com/

  6. Quantum teleportation of patterns of light (2017). https://www.sciencedaily.com/releases/2017/09/170921121147.htm

  7. Quantum network - Wikipedia (2018). https://en.wikipedia.org/wiki/Quantum_network

  8. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  MathSciNet  Google Scholar 

  9. Bennett, C.H., Shor, P.W.: Quantum information theory. IEEE Trans. Inform. Theory 44(6), 2724–2742 (1998)

    Article  MathSciNet  Google Scholar 

  10. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390(6660), 575–579 (1997)

    Article  Google Scholar 

  11. Braunstein, S.L., Van Loock, P.: Quantum information with continuous variables. Rev. Mod. Phys. 77(2), 513 (2005)

    Article  MathSciNet  Google Scholar 

  12. Briegel, H.J., Dür, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81(26), 5932 (1998)

    Article  Google Scholar 

  13. Castelvecchi, D.: IBM’s quantum cloud computer goes commercial. Nat. News 543(7644), 159 (2017)

    Article  Google Scholar 

  14. De Riedmatten, H., Marcikic, I., Van Houwelingen, J., Tittel, W., Zbinden, H., Gisin, N.: Long-distance entanglement swapping with photons from separated sources. Phys. Rev. A 71(5), 050302 (2005)

    Article  Google Scholar 

  15. Devitt, S.J.: Performing quantum computing experiments in the cloud. Phys. Rev. A 94(3), 032329 (2016)

    Article  Google Scholar 

  16. Dolev, S., Pitowsky, I., Tamir, B.: A quantum secret ballot. arXiv preprint quant-ph/0602087 (2006)

    Google Scholar 

  17. Eastin, B., Flammia, S.T.: Q-circuit tutorial. arXiv preprint quant-ph/0406003 (2004)

    Google Scholar 

  18. Eisert, J., Plenio, M.: Introduction to the basics of entanglement theory in continuous-variable systems. Int. J. Quant. Inform. 1(04), 479–506 (2003)

    Article  Google Scholar 

  19. Elliott, C.: The DARPA quantum network. In: Quantum Communications and Cryptography, pp. 83–102 (2006)

    Google Scholar 

  20. Furusawa, A., Sørensen, J.L., Braunstein, S.L., Fuchs, C.A., Kimble, H.J., Polzik, E.S.: Unconditional quantum teleportation. Science 282(5389), 706–709 (1998)

    Article  Google Scholar 

  21. Gibney, E., et al.: One giant step for quantum internet (2016)

    Google Scholar 

  22. Hillery, M., Ziman, M., Bužek, V., Bieliková, M.: Towards quantum-based privacy and voting. Phys. Lett. A 349(1–4), 75–81 (2006)

    Article  Google Scholar 

  23. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865 (2009)

    Article  MathSciNet  Google Scholar 

  24. IBM: Quantum cloud. https://www.ibm.com/cloud/why-ibm/

  25. Jennewein, T., Weihs, G., Pan, J.W., Zeilinger, A.: Experimental nonlocality proof of quantum teleportation and entanglement swapping. Phys. Rev. Lett. 88(1), 017903 (2001)

    Article  Google Scholar 

  26. Julsgaard, B., Sherson, J., Cirac, J.I., Fiurášek, J., Polzik, E.S.: Experimental demonstration of quantum memory for light. Nature 432(7016), 482–486 (2004)

    Article  Google Scholar 

  27. Kimble, H.J.: The quantum internet. Nature 453(7198), 1023–1030 (2008)

    Article  Google Scholar 

  28. Kirby, B.T., Santra, S., Malinovsky, V.S., Brodsky, M.: Entanglement swapping of two arbitrarily degraded entangled states. Phys. Rev. A 94(1), 012336 (2016)

    Article  Google Scholar 

  29. Ma, X.S., et al.: Quantum teleportation over 143 kilometres using active feed-forward. Nature 489(7415), 269–273 (2012)

    Article  Google Scholar 

  30. Megidish, E., Halevy, A., Shacham, T., Dvir, T., Dovrat, L., Eisenberg, H.S.: Entanglement between photons that never co-existed. In: Frontiers in Optics, p. FTh2C-4. Optical Society of America (2012)

    Google Scholar 

  31. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Quantum 546, 1231 (2010)

    Google Scholar 

  32. Pan, J.W., Bouwmeester, D., Weinfurter, H., Zeilinger, A.: Experimental entanglement swapping: entangling photons that never interacted. Phys. Rev. Lett. 80(18), 3891 (1998)

    Article  MathSciNet  Google Scholar 

  33. Peev, M., et al.: The secoqc quantum key distribution network in vienna. New J. Phys. 11(7), 075001 (2009)

    Article  Google Scholar 

  34. Pirandola, S., Braunstein, S.L.: Unite to build a quantum internet. Nature 532, 169–171 (2016)

    Article  Google Scholar 

  35. Pugh, C.J., et al.: Airborne demonstration of a quantum key distribution receiver payload. In: CLEO: Applications and Technology, p. ATu4B-5. Optical Society of America (2017)

    Google Scholar 

  36. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86(22), 5188 (2001)

    Article  Google Scholar 

  37. Ren, J.G., et al.: Ground-to-satellite quantum teleportation. arXiv preprint arXiv:1707.00934 (2017)

  38. Sasaki, M., et al.: Field test of quantum key distribution in the tokyo QKD network. Opt. Express 19(11), 10387–10409 (2011)

    Article  Google Scholar 

  39. Sherson, J.F., et al.: Quantum teleportation between light and matter. Nature 443(7111), 557–560 (2006)

    Article  Google Scholar 

  40. Simon, C., et al.: Quantum memories. Eur. Phys. J. D 58(1), 1–22 (2010)

    Article  Google Scholar 

  41. Singh, S.K., Srikanth, R.: Generalized quantum secret sharing. Phys. Rev. A 71(1), 012328 (2005)

    Article  MathSciNet  Google Scholar 

  42. Tindol, R.: Caltech physicists achieve first bona fide quantum teleportation—caltech. http://www.caltech.edu/news/caltech-physicists-achieve-first-bona-fide-quantum-teleportation-291

  43. Vaccaro, J.A., Spring, J., Chefles, A.: Quantum protocols for anonymous voting and surveying. Phys. Rev. A 75(1), 012333 (2007)

    Article  Google Scholar 

  44. Van Meter, R.: Quantum Networking. Wiley, Hoboken (2014)

    Book  Google Scholar 

  45. Yin, J., et al.: Satellite-based entanglement distribution over 1200 kilometers. Science 356(6343), 1140–1144 (2017)

    Article  Google Scholar 

  46. Yin, J., et al.: Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature 488(7410), 185–188 (2012)

    Article  Google Scholar 

  47. Zukowski, M., Zeilinger, A., Horne, M.A., Ekert, A.K.: “Event-ready-detectors" bell experiment via entanglement swapping. Phys. Rev. Lett. 71(26), 4287–4290 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preeti Kandwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kandwal, P., Spring, W.J., Xiao, H. (2019). Quantum Based Networks: Analysis of Quantum Teleportation Protocol and Entanglement Swapping (Workshop Paper). In: Wang, X., Gao, H., Iqbal, M., Min, G. (eds) Collaborative Computing: Networking, Applications and Worksharing. CollaborateCom 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 292. Springer, Cham. https://doi.org/10.1007/978-3-030-30146-0_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30146-0_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30145-3

  • Online ISBN: 978-3-030-30146-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics