Skip to main content

An Approach for Item Recommendation Using Deep Neural Network Combined with the Bayesian Personalized Ranking

  • Conference paper
  • First Online:

Abstract

This paper proposes a deep neural network model (SDAE-BPR) based on Stack Denoising Auto-Encoder and Bayesian Personalized Ranking for the problem of accurate product recommendation. First, we use the Stack Denoising Auto-Encoder (SDAE) as the input of the item’s rating data and obtain the hidden features after encoding. Second, the Bayesian personalized Ranking (BPR) method is used to learn the hidden feature vector of the corresponding item. This model can avoid the influence of the sparseness of the matrix. Therefore, this model achieves the effect of more accurate recommendations of items. Third, to reduce the cost of model training, a unique pre-training and fine-tuning strategy is proposed in the deep neural network. Finally, based on the Movielens 20M dataset, the results of the SDAE-BPR, a traditional item-based collaborative filtering model and a user-based collaborative filtering model are compared. It is shown that the SDAE-BPR has higher accuracy. This method improves the accuracy of parameter estimation and the efficiency of model training.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Xie, F., Chen, Z., Xu, H., et al.: Threshold based similarity transitivity method in collaborative filtering with cloud computing. Tsinghua Sci. Technol. 18(3), 318–327 (2013)

    Article  Google Scholar 

  2. Stanford University’s machine learning course on courser. https://www.coursera.org/learn/machine-learning/lecture/2WoBV/collaborative-filterin. Accessed 29 Mar 2019

  3. Li, W., Yeung, D., Zhang, Z.: Generalized latent factor models for social network analysis. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence, Barcelona, Spain, pp. 1705–1710 (2011)

    Google Scholar 

  4. Bobadilla, J., Ortega, F., Hernando, A., et al.: Recommender systems survey. Knowl.-Based Syst. 46, 109–132 (2013)

    Article  Google Scholar 

  5. Vincent, P., Larochelle, H., Bengio, Y., et al.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, pp. 1096–1103 (2008)

    Google Scholar 

  6. Ding, D., Zhang, M, Li, S., et al.: BayDNN: friend recommendation with bayesian personalized ranking deep neural network. In: ACM (2017)

    Google Scholar 

  7. Wang, H., Shi, X., Yeung, D.: Relational stacked denoising autoencoder for tag recommendation. In: Proceedings of the 29th Conference on Artificial Intelligence, Austin, USA, pp. 3052–3058 (2015)

    Google Scholar 

  8. Zeiler, M.D.: ADADELTA: an adaptive learning rate method. Comput. Sci. (2012)

    Google Scholar 

  9. Recommend for new research. http://grouplens.org/datasets/movielens. Accessed 30 Mar 2019

  10. Zhao, Z., Shang, M.: User-based collaborative-filtering recommendation algorithms on Hadoop. In: WKDD 2010 Third International Conference on IEEE, pp. 478–481 (2010)

    Google Scholar 

  11. Su, X., Khoshgoftaar, T.: A survey of collaborative filtering techniques. Adv. Artif. Intell. 2009(4), 421425:1–421425:19 (2009)

    Google Scholar 

  12. Bradley, A.P.: The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn. 30(7), 1145–1159 (1997)

    Article  Google Scholar 

  13. Boyd, K., Eng, Kevin H., Page, C.D.: Area under the precision-recall curve: point estimates and confidence intervals. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8190, pp. 451–466. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40994-3_29

    Chapter  Google Scholar 

  14. Yilmaz, E., Kanoulas, E., Aslam, J.: A simple and efficient sampling method for estimating AP and NDCG In: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 603–610. ACM (2008)

    Google Scholar 

  15. Deshpande, M., Karypis, G.: Item-based top-n recommendation algorithms. ACM Trans. Inform. Syst. 22(1), 143–177 (2004)

    Article  Google Scholar 

  16. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Incremental singular value decomposition algorithms for highly scalable recommender systems. In: Proceedings of the 5th International Conference in Computers and Information Technology (2002)

    Google Scholar 

  17. Silver, D., Huang, A., Maddison, C., et al.: Mastering the game of Go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

    Article  Google Scholar 

  18. Wu, Y., Schuster, M., Chen, Z., et al.: Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:1708.05123 (2017)

  19. Cheng, H., Koc, L., Harmsen, J., et al.: Wide & deep learning for recommender systems. In: Proceedings of the 1st Workshop on Deep Learning for Recommender System, Boston, USA, pp. 7–10 (2017)

    Google Scholar 

  20. Shan, Y., Hoens, T., Jiao, J., et al.: Deep crossing: web-scale modeling without manually crafted combinatorial features. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, USA, pp. 255–262 (2017)

    Google Scholar 

  21. Guo, H., Tang, R., Ye, Y., et al.: DeepFM: A factorization-machine based neural network for CTR prediction. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Australia, pp. 1725–1731 (2017)

    Google Scholar 

  22. Zhou, G., Song, C., Zhu, X., et al.: Deep interest network for click-through rate prediction. arXiv preprint arXiv:1708.05123 (2017)

  23. Wu, Y., DuBois, C., Zheng, A., et al.: Collaborative denoising auto-encoders for top-n recommender systems. In: Proceedings of the 9th ACM International Conference on Web Search and Data Mining, San Francisco, USA, pp. 153–162 (2016)

    Google Scholar 

  24. Vasile, F., Smirnova, E., Conneau, A.: Meta-Prod2Vec: product embeddings using side-information for recommendation. In: Proceedings of the ACM Conference on Recommender Systems, Boston, USA, pp. 225–232 (2016)

    Google Scholar 

  25. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. In: Proceedings of the Advance in Neural Information Processing Systems, Lake Tahoe, USA, pp. 1097–1105 (2012)

    Google Scholar 

  26. Graves, A., Jaitly, N.: Towards end-to-end speech recognition with recurrent neural networks. In: Proceedings of the 31st International Conference on Machine Learning, Beijing, China, pp. 1764–1772 (2014)

    Google Scholar 

  27. Strub, F., Mary, J.: Collaborative filtering with stacked denoising AutoEncoders and sparse inputs. In: Proceedings of the NIPS Workshop on Machine Learning for E-Commerce, Montreal, Canada (2015)

    Google Scholar 

  28. Vincent, P., Larochelle, H., Lajoie, I., et al.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11(12), 3371–3408 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Bengio, Y., Lamblin, P., Popvici, D., et al.: Greedy layer-wise, training of deep networks. In: Proceedings of the Advances in Neural Information Processing Systems, Vancouver, Canada, pp. 153–160 (2007)

    Google Scholar 

  30. Li, Z., Fang, X., Sheng, O.R.L.: A survey of link recommendation for social networks: methods, theoretical foundations, and future research directions. Comput. Sci. (2015)

    Google Scholar 

  31. Han, S., Yan, X.: Friend recommendation of microblog in classification framework: using multiple social behavior features. In: International Conference on Behavior, Economic and Social Computing, pp. 1–6 (2014)

    Google Scholar 

  32. Jeni, L., Cohn, J., Torre, F.: Facing imbalanced data recommendations for the use of performance metrics. In: Humaine Association Conference on Affective Computing and Intelligent Interaction, pp. 245–251 (2012)

    Google Scholar 

  33. Qiu, S., et al.: Item group based pairwise preference learning for personalized ranking. In: Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1219–1222 (2014)

    Google Scholar 

  34. Rendle, S., Freudenthaler, C., Gantner, Z., et al.: BPR: Bayesian personalized ranking from implicit feedback In: Conference on Uncertainty in Artificial Intelligence. AUAI Press (2009)

    Google Scholar 

Download references

Acknowledgments

This paper is supported by the Youth Foundation of Shanghai Polytechnic University under Grant No. EGD18XQD01; the CERNET Innovation Project No. NGII2017 0513.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoxian Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bi, Z., Zhou, S., Yang, X., Zhou, P., Wu, J. (2019). An Approach for Item Recommendation Using Deep Neural Network Combined with the Bayesian Personalized Ranking. In: Wang, X., Gao, H., Iqbal, M., Min, G. (eds) Collaborative Computing: Networking, Applications and Worksharing. CollaborateCom 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 292. Springer, Cham. https://doi.org/10.1007/978-3-030-30146-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30146-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30145-3

  • Online ISBN: 978-3-030-30146-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics