Skip to main content

Stress Determination for Granular Materials Using TSA: An Inverse Approach

  • Conference paper
  • First Online:
  • 481 Accesses

Abstract

Granular materials are among the materials which do not fall within the traditional definition of matter. The behavior of granular materials is of great importance in fields such as chemical and agronomical industries, since many of the materials used are prepared from powders or grains, or in geotechnical engineering due to discrete nature of soils. Extensive research has been done to study and quantify the contact force network on various granular systems, specifically the contact force distribution in terms of magnitudes and orientations. However, the stress magnitudes in the contact zones have always been a challenge, regardless of the full-field method used in the analysis. The objective of the work presented here is to determine the stresses in two-dimensional granular materials from a thermoelastic stress analysis (TSA) test using an inverse approach. The inverse approach relies on both the TSA values in the vicinity of the interparticle contacts, an extension of superposed Flamant solutions for concentrated forces on surfaces, as well as static equilibrium equations. Preliminary results on a periodic stacking of cylinders show promising perspectives for granular materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. H.M. Jaeger, S.R. Nagel, Granular solids, liquids, and gases. Rev. Mod. Phys. 68, 1259–1272 (1996)

    Article  Google Scholar 

  2. S. Ostojic, E. Somfai, B. Nienhuis, Scale invariance and universality of force networks in static granular matter. Nature 439, 828–830 (2006)

    Google Scholar 

  3. D.H. Nguyen, E. Azéma, F. Radjai, P. Sornay, Effect of size polydispersity versus particle shape in dense granular media. Phys. Rev. E 90, 012202 (2014)

    Article  Google Scholar 

  4. A.A. Peña, R. García-Rojo, H.J. Herrmann, Influence of particle shape on sheared dense granular media. Granul. Matter 9, 279–291 (2007)

    Article  Google Scholar 

  5. C. Nouguier-Lehon, B. Cambou, E. Vincens, Influence of particle shape and angularity on the behaviour of granular materials: a numerical analysis. Int. J. Numer. Anal. Methods Geomech. 27, 1207–1226 (2003)

    Article  Google Scholar 

  6. S.G. Bardenhagen, J.U. Brackbill, D. Sulsky, Numerical study of stress distribution in sheared granular material in two dimensions. Phys. Rev. E 62, 3882–3890 (2000)

    Article  Google Scholar 

  7. I. Preechawuttipong, R. Peyroux, F. Radjai, W. Rangsri, Static states of cohesive granular media. J. Mech. Sci. Technol. 21, 1957–1963 (2007)

    Article  Google Scholar 

  8. P. Jongchansitto, I. Preechawuttipong, X. Balandraud, M. Grédiac, Numerical investigation of the influence of particle size and particle number ratios on texture and force transmission in binary granular composites. Powder Technol. 308, 324–333 (2017)

    Article  Google Scholar 

  9. H. Wolf, D. Konig, T. Triantafyllidis, Experimental investigation of shear band patterns in granular material. J. Struct. Geol. 25, 1229–1240 (2003)

    Article  Google Scholar 

  10. S.A. Hall, M. Bornert, J. Desrues, Y. Pannier, N. Lenoir, G. Viggiani, P. Besuelle, Discrete and continuum analysis of localised deformation in sand using X-ray μCT and volumetric digital image correlation. Geotechnique 60, 315–322 (2010)

    Google Scholar 

  11. G. Schneebeli, Une analogie mécanique pour les terres sans cohésion. C. R. Hebd. Acad. Sci. 243, 125–126 (1956)

    Google Scholar 

  12. C. Slominski, M. Niedostatkiewicz, J. Tejchman, Application of particle image velocimetry (PIV) for deformation measurement during granular silo flow. Powder Technol. 173, 1–18 (2007)

    Article  Google Scholar 

  13. S.A. Hall, D.M. Wood, E. Ibraim, G. Viggiani, Localised deformation patterning in 2D granular materials revealed by digital image correlation. Granul. Matter 12, 1–14 (2010)

    Article  Google Scholar 

  14. V. Richefeu, G. Combe, G. Viggiani, An experimental assessment of displacement fluctuations in a 2D granular material subjected to shear. Geotech. Lett. 2, 113–118 (2012)

    Article  Google Scholar 

  15. E. Marteau, J.E. Andrade, A novel experimental device for investigating the multiscale behavior of granular materials under shear. Granul. Matter 19, 77 (2017)

    Article  Google Scholar 

  16. R. Hurley, E. Marteau, G. Ravichandran, J.E. Andrade, Extracting inter-particle forces in opaque granular materials: beyond photoelasticity. J. Mech. Phys. Solids 63, 154–166 (2014)

    Article  Google Scholar 

  17. R.C. Hurley, K.W. Lim, G. Ravichandran, J.E. Andrade, Dynamic inter-particle force inference in granular materials: method and application. Exp. Mech. 56, 217–229 (2016)

    Article  Google Scholar 

  18. N. Karanjgaokar, Evaluation of energy contributions using inter-particle forces in granular materials under impact loading. Granul. Matter 19, 36 (2017)

    Article  Google Scholar 

  19. A. Shukla, C. Damania, Experimental investigation of wave velocity and dynamic contact stresses in an assembly of disks. Exp. Mech. 27, 268–281 (1987)

    Article  Google Scholar 

  20. K.M. Roessig, J.C. Foster, S.G. Bardenhagen, Dynamic stress chain formation in a two-dimensional particle bed. Exp. Mech. 42, 329–337 (2002)

    Article  Google Scholar 

  21. S.A. Mirbagheri, E. Ceniceros, M. Jabbarzadeh, et al., Sensitively photoelastic biocompatible gelatin spheres for investigation of locomotion in granular media. Exp. Mech. 55, 427–438 (2015)

    Article  Google Scholar 

  22. C. Chaiamarit, X. Balandraud, I. Preechawuttipong, M. Grédiac, Stress network analysis of 2D non-cohesive polydisperse granular materials using infrared thermography. Exp. Mech. 39, 761–769 (2015)

    Article  Google Scholar 

  23. P. Jongchansitto, X. Balandraud, M. Grédiac, C. Beitone, I. Preechawuttipong, Using infrared thermography to study hydrostatic stress networks in granular materials. Soft Matter 10, 8603–8607 (2014)

    Article  Google Scholar 

  24. T.S. Majmudar, R.P. Behringer, Contact force measurements and stress-induced anisotropy in granular materials. Nature 435, 1079–1082 (2005)

    Article  Google Scholar 

  25. M. Yousefi, X. Balandraud, W.A. Samad, Thermographic stress field investigation of a multiply-loaded disk, in Residual Stress Thermomechanics & Infrared Imaging, Hybrid Techniques and Inverse Problems, vol. 7 (Springer, Cham, 2019), pp. 115–117

    Google Scholar 

  26. S. Lin, D. Matthys, R.E. Rowlands, Separating stresses thermoelastically in a central circularly perforated plate using an airy stress function. Strain 45, 516–526 (2009)

    Article  Google Scholar 

  27. A.A. Khaja, R.E. Rowlands, Experimentally determined stresses associated with elliptical holes using polar coordinates. Strain 49, 116–124 (2013)

    Article  Google Scholar 

  28. W.A. Samad, R.E. Rowlands, Full-field thermoelastic stress analysis of a finite structure containing an irregularly-shaped hole. Exp. Mech. 54, 457–469 (2014)

    Article  Google Scholar 

  29. W.A. Samad, A.A. Khaja, A. Kaliyanda, R.E. Rowlands, Hybrid thermoelastic stress analysis of a pinned joint. Exp. Mech. 54, 515–525 (2014)

    Article  Google Scholar 

  30. B. Foust, R.E. Rowlands, Thermoelastic determination of individual stresses in a diametrally loaded disk. Strain 47, 146–153 (2011)

    Article  Google Scholar 

  31. S. Lin, W.A. Samad, A.A. Khaja, R.E. Rowlands, Hybrid thermoelastic stress analysis. Exp. Mech. 55, 653–665 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Dr. Chanwit Chaiamarit, Dr. Pawarut Jongchansitto and Prof. Itthichai Preechawuttipong from Chiang Mai University, Thailand for the discussions about the mechanical response of granular materials. Ms. Rym Boufayed, Université Clermont-Auvergne, France is also acknowledged for the help in image processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wael A. Samad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yousefi, M., Balandraud, X., Samad, W.A. (2020). Stress Determination for Granular Materials Using TSA: An Inverse Approach. In: Baldi, A., Kramer, S., Pierron, F., Considine, J., Bossuyt, S., Hoefnagels, J. (eds) Residual Stress, Thermomechanics & Infrared Imaging and Inverse Problems, Volume 6. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-030-30098-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30098-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30097-5

  • Online ISBN: 978-3-030-30098-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics