Skip to main content

Immunotherapy in Oral Cancer: A Fourth Dimension of Cancer Treatment

  • Chapter
  • First Online:
Book cover Improving Outcomes in Oral Cancer

Abstract

The development of immune checkpoint inhibitors and adoptive T cell transfer have transformed the practice of oncology. Initially successful in melanoma, immunotherapy is currently being tested in virtually every solid tumor, including head and neck squamous cell carcinoma (HNSCC). In 2016, the FDA approved two checkpoint inhibitors, nivolumab and pembrolizumab, for the treatment of platinum-refractory recurrent or metastatic HNSCC, after clinical trials showed improved survival where no effective treatment had existed previously. But despite the potential for enduring remissions, checkpoint inhibitors are only effective in a minority of patients. Additional strategies are being developed to harness the immune system by a variety of mechanisms to generate lasting antitumor responses for a greater proportion of cancer patients. These include targeting different pathways in the immune response, combining immunotherapies to produce synergistic effects, and combining immunotherapy with traditional therapies including surgery, chemotherapy, and radiation. Despite its current limitations, immunotherapy is quickly becoming established as the fourth modality for treatment of a wide range of malignancies including oral cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39:1–10.

    Article  PubMed  Google Scholar 

  2. Schreiber RD, Ikeda H, Dunn GP, Bruce AT, Old LJ. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3:991–8.

    Article  PubMed  Google Scholar 

  3. Hanahan D, Weinberg R. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  PubMed  Google Scholar 

  4. Isaacsson Velho PH, Castro J, Gilberto CCH. Targeting the PI3K pathway in head and neck squamous cell carcinoma. Am Soc Clin Oncol Meet. 2015;2015:123.

    Article  Google Scholar 

  5. Cai Y, Dodhia S, Su GH. Dysregulations in the PI3K pathway and targeted therapies for head and neck squamous cell carcinoma. Oncotarget. 2017;8:22203–17.

    PubMed  PubMed Central  Google Scholar 

  6. Tran E, Robbins PF, Lu YC, Prickett TD, Gartner JJ, Jia L, Pasetto A, Zheng Z, Ray S, Groh EM, Kriley IR, Rosenberg SA. T-cell transfer therapy targeting mutant KRAS in cancer. N Engl J Med. 2016;375(23):2255–62. https://doi.org/10.1056/NEJMoa1609279. PubMed PMID: 27959684; PMCID: PMC5178827.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu V, West AN, Carmona M, Kivork C, Seja E, Cherry G, Gutierrez AJ, Grogan TR, Mateus C, Tomasic G, Glaspy JA, Emerson RO, Robins H, Pierce RH, Elashoff DA, Robert C, Ribas A. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568–71. https://doi.org/10.1038/nature13954. PubMed PMID: 25428505; PMCID: PMC4246418.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Spranger S, Spaapen RM, Zha Y, Williams J, Meng Y, Ha TT, Gajewski TF. Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci Transl Med. 2013;5(200):200ra116. https://doi.org/10.1126/scitranslmed.3006504. PubMed PMID: 23986400; PMCID: PMC4136707.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jie HB, Gildener-Leapman N, Li J, Srivastava RM, Gibson SP, Whiteside TL, Ferris RL. Intratumoral regulatory T cells upregulate immunosuppressive molecules in head and neck cancer patients. Br J Cancer. 2013;109(10):2629–35. https://doi.org/10.1038/bjc.2013.645. PubMed PMID: 24169351; PMCID: PMC3833228.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, McCracken MN, Gupta R, Tsai JM, Sinha R, Corey D, Ring AM, Connolly AJ, Weissman IL. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature. 2017;545(7655):495–9. https://doi.org/10.1038/nature22396. PubMed PMID: 28514441; PMCID: PMC5931375.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mehal WZ, Sheikh SZ, Gorelik L, Flavell RA. TGF-beta signaling regulates CD8+ T cell responses to high- and low-affinity TCR interactions. Int Immunol. 2005;17(5):531–8. https://doi.org/10.1093/intimm/dxh233.

    Article  PubMed  Google Scholar 

  12. Puram SV, Rocco JW. Molecular aspects of head and neck cancer therapy. Hematol Oncol Clin North Am. 2015;29:971–92.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fakhry C, Westra WH, Li S, Cmelak A, Ridge JA, Pinto H, Forastiere A, Gillison ML. Improved survival of patients with human papillomavirus–positive head and neck squamous cell carcinoma in a prospective clinical trial. J Natl Cancer Inst. 2008;100(4):261–9. https://doi.org/10.1093/jnci/djn011.

    Article  PubMed  Google Scholar 

  14. Lingen MW. Low etiologic fraction for high-risk human papillomavirus in oral cavity squamous cell carcinomas. Oral Oncol. 2013;49(1):1–8. https://doi.org/10.1016/j.oraloncology.2012.07.002

    Article  PubMed  Google Scholar 

  15. Nivolumab for SCCHN. U.S. Food and Drug Administration. https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm528920.htm.

  16. Vermorken JB, Mesia R, Rivera F, et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med. 2008;359:1116–27.

    Article  PubMed  Google Scholar 

  17. Ferris RL, Blumenschein Jr GR, Fayette J, et al. Nivolumab (Nivo) vs investigator’s choice (IC) in recurrent or metastatic (R/M) squamous cell carcinoma of the head and neck (SCCHN): 2-yr outcomes in the overall population and PD-L1 subgroups of CheckMate 141. Oral presentation at: 2018 American Association for Cancer Research annual meeting, 14–18 Apr 2018, Chicago, IL.

    Google Scholar 

  18. Pembrolizumab (KEYTRUDA). U.S. Food and Drug Administration. https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm515627.htm. Accessed 25 Nov 2017.

  19. Bauml J, Seiwert TY, Pfister DG, et al. Pembrolizumab for platinum- and cetuximab-refractory head and neck cancer: results from a single-arm, phase II study. J Clin Oncol. 2017;35:1542–9.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Soulieres D, et al. Updated survival results of the KEYNOTE-040 study of pembrolizumab vs standard-of-care chemotherapy for recurrent or metastatic head and neck squamous cell carcinoma. Abstract CT115. Presented at: American Association for Cancer Research Annual Meeting; 14–18 Apr, Chicago; 2018.

    Google Scholar 

  21. Burtness B, Harrington KJ, Greil R, Soulières D, Tahara M, De Castro JG, et al. LBA8_PRKEYNOTE-048: Phase III study of first-line pembrolizumab (P) for recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC). Ann Oncol. 2018;29(suppl_8):mdy424.045.

    Google Scholar 

  22. Alsaab HO, Sau S, Alzhrani R, et al. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol. 2017;8:561. https://doi.org/10.3389/fphar.2017.00561.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Butte MJ, Keir ME, Phamduy TB, Sharpe AH, Freeman GJ. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity. 2007;27:111–22.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Xiao Y, Yu S, Zhu B, et al. RGMb is a novel binding partner for PD-L2 and its engagement with PD-L2 promotes respiratory tolerance. J Exp Med. 2014;211:943–59.

    Article  PubMed  PubMed Central  Google Scholar 

  25. European Society for Medical Oncology. ESMO 2017: durvalumab shows promising clinical benefit in recurrent/metastatic head and neck squamous cell carcinoma (11 Sep 2017). Accessed 24 Dec 2017. http://www.esmo.org/Conferences/Past-Conferences/ESMO-2017-Congress/News-Articles/.

  26. Buchbinder EI, Desai A. CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am J Clin Oncol. 2016;39(1):98–106. https://doi.org/10.1097/COC.0000000000000239.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Du X, et al. A reappraisal of CTLA-4 checkpoint blockade in cancer immunotherapy. Cell Res. 2018;28(4):416.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23. https://doi.org/10.1056/NEJMoa1003466. PubMed PMID: 20525992; PMCID: PMC3549297.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Koyama S, Akbay EA, Li YY, et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun. 2016;7:10501.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Economopoulou P, Kotsantis I, Psyrri A. The promise of immunotherapy in head and neck squamous cell carcinoma: combinatorial immunotherapy approaches. ESMO Open. 2017;1:e000122.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Goldberg MV, Drake CG. LAG-3 in cancer immunotherapy. Curr Top Microbiol Immunol. 2011;344:269–78.

    PubMed  PubMed Central  Google Scholar 

  32. Pauken KE, Wherry EJ. TIGIT and CD226: tipping the balance between costimulatory and coinhibitory molecules to augment the cancer immunotherapy toolkit. Cancer Cell. 2014;26(6):785–7.

    Article  PubMed  Google Scholar 

  33. Argiris A, Gillison M, Ferris RL, Harrington K, Sanchez TK, Baudelet C, Geese WJ, Shaw J, Haddad R. A randomized, open-label, phase 3 study of nivolumab in combination with ipilimumab vs extreme regimen (cetuximab + cisplatin/carboplatin + fluorouracil) as first-line therapy in patients with recurrent or metastatic squamous cell carcinoma of the head and neck-CheckMate 651. Ann Oncol. 2016;27(Suppl_6):1016TiP. https://doi.org/10.1093/annonc/mdw376.68.

    Article  Google Scholar 

  34. Siu L, et al. A randomized, open-label, multicenter, global phase 2 study of durvalumab (D), tremelimumab (T), or D plus T, in patients with PD-L1 low/negative recurrent or metastatic head and neck squamous cell carcinoma: CONDOR. Int J Rad Oncol Biol Phys. 2017;100(5):1307. https://doi.org/10.1016/j.ijrobp.2017.12.021.

    Article  Google Scholar 

  35. Ascierto PA, Bono P, Bhatia S, et al. Efficacy of BMS-986016, a monoclonal antibody that targets lymphocyte activation gene-3 (LAG-3), in combination with nivolumab in pts with melanoma. In: Proceedings from the 2017 ESMO congress, 8–12 Sep 2017, Madrid, Spain. Abstract LBA18.

    Google Scholar 

  36. Harding FA, McArthur JG, Gross A, Raulet DH, Allison JP. CD28-mediated signaling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature. 1992;356:607–9.

    Article  PubMed  Google Scholar 

  37. Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. 2013;13:227.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Acton QA. Cytokines. In: Acton QA, editor. Intercellular signaling peptides and proteins – advances in research and application. Atlanta, GA: Scholarly Editions; 2013. p. 278.

    Google Scholar 

  39. Burris HA, Callahan MK, et al. Phase 1 safety of ICOS agonist antibody JTX-2011 alone and with nivolumab (nivo) in advanced solid tumors; predicted vs observed pharmacokinetics (PK) in ICONIC. J Clin Oncol. 2017;35(Suppl):abstr 3033.

    Article  Google Scholar 

  40. Sturgill ER, Redmond WL. TNFR agonists: a review of current biologics targeting OX40, 4-1BB, CD27, and GITR. AJHO. 2017;13(11):4–15.

    Google Scholar 

  41. Guo Z, Wang X, Cheng D, Xia Z, Luan M, Zhang S. PD-1 blockade and OX40 triggering synergistically protects against tumor growth in a murine model of ovarian cancer. PLoS One. 2014;9:e89350.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Montler R, Bell RB, Thalhofer C, Leidner R, Feng Z, Fox BA, Cheng AC, Bui TG, Tucker C, Hoen H, Weinberg A. OX40, PD-1 and CTLA-4 are selectively expressed on tumor-infiltrating T cells in head and neck cancer. Clin Transl Immunol. 2016;5(4):e70. https://doi.org/10.1038/cti.2016.16. PubMed PMID: 27195113; PMCID: PMC4855266.

    Article  Google Scholar 

  43. Bell RB, Leidner RS, Crittenden MR, et al. OX40 signaling in head and neck squamous cell carcinoma: overcoming immunosuppression in the tumor microenvironment. Oral Oncol. 2016;52:1–10.

    Article  PubMed  Google Scholar 

  44. Bell RB, Duhen R, Ballesteros-Merino C, Duhen T, Bifulco C, Piening BD, Bernard B, Pucilowska J, Tamakawa R, Redmond WL, Koguchi Y, Montler R, Morris G, Fisher B, Shuster M, Cheng A, Patel A, Urba WJ, Fox BA, Curti BD, Leidner RS, Weinberg AD. Neoadjvuant anti-OX40 (MEDI6469) prior to surgery in head and neck squamous cell carcinoma. J Clin Oncol. 2018;36(Suppl):abstr 6011.

    Article  Google Scholar 

  45. Kohrt HE, Houot R, Weiskopf K, et al. Stimulation of natural killer cells with a CD137-specific antibody enhances trastuzumab efficacy in xenotransplant models of breast cancer. J Clin Invest. 2012;122:1066–75.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Knee DA, Hewes B, Brogdon JL. Rationale for anti-GITR cancer immunotherapy. Eur J Cancer. 2016;67:1–10.

    Article  PubMed  Google Scholar 

  47. van de Ven K, Borst J. Targeting the T-cell co-stimulatory CD27/CD70 pathway in cancer immunotherapy: rationale and potential. Immunotherapy. 2015;7:655–67.

    Article  PubMed  Google Scholar 

  48. Cao W, Cavacini L, Tillman K, Posner M. CD40 function in squamous cell cancer of the head and neck. Oral Oncology. 2005;41:462–9.

    Article  PubMed  Google Scholar 

  49. Vonderheide RH, Glennie MJ. Agonistic CD40 antibodies and cancer therapy. Clin Cancer Res. 2013;19(5):1035–43.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Vonderheide R, Dutcher J, Gribben J, et al. Phase I study of recombinant human CD40 ligand in cancer patients. J Clin Oncol. 2001;19(13):3280–7.

    Article  PubMed  Google Scholar 

  51. Hauschild A. Adjuvant interferon alfa for melanoma. Curr Oncol. 2010;17(3):6–7.

    Google Scholar 

  52. Payne R, Glenn L, Hoen H, et al. Durable responses and reversible toxicity of high-dose interleukin-2 treatment of melanoma and renal cancer in a Community Hospital Biotherapy Program. J Immunother Cancer. 2014;2:13. https://doi.org/10.1186/2051-1426-2-13.

    Article  PubMed  PubMed Central  Google Scholar 

  53. De Stefani A, et al. Improved survival with perilymphatic interleukin 2 in patients with resectable squamous cell carcinoma of the oral cavity and oropharynx. Cancer. 2002;95(1):90–7.

    Article  PubMed  Google Scholar 

  54. Wolf GT, Fee WE, Dolan RW, et al. Novel neoadjuvant immunotherapy regimen safety and survival in head and neck squamous cell cancer. Head Neck. 2011;33(12):1666–74. https://doi.org/10.1002/hed.21660.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Tímár J, et al. Neoadjuvant immunotherapy of oral squamous cell carcinoma modulates intratumoral CD4/CD8 ratio and tumor microenvironment: a multicenter phase II clinical trial. J Clin Oncol. 2005;23(15):3421–32.

    Article  PubMed  Google Scholar 

  56. Romano E, Margolin K. T cell modulatory cytokines. In: Butterfield LH, Kaufman HL, Marincola FM, editors. Cancer immunotherapy principles and practice. New York, NY: Demos LLC; 2017.

    Google Scholar 

  57. Miller J, Morishima C, Conlon K, et al. A first-in-human phase i study of subcutaneous outpatient recombinant human IL15 (rhIL15) in adults with advanced solid tumors. Clin Cancer Res. 2018;24(7):1525–35.

    Article  PubMed  Google Scholar 

  58. O’Neil LAJ. The innate immune system. In: Paul WE, editor. Fundamental immunology. 7th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2013.

    Google Scholar 

  59. Land WG. The role of damage-associated molecular patterns (DAMPs) in human diseases: part II: DAMPs as diagnostics, prognostics and therapeutics in clinical medicine. Sultan Qaboos Univ Med J. 2015;15(2):e157–70.

    PubMed  PubMed Central  Google Scholar 

  60. Gajewski TF. Manipulating innate immune pathways as cancer immunotherapy. In: Butterfield LH, Kaufman HL, Marincola FM, editors. Cancer immunotherapy principles and practice. New York, NY: Demos LLC; 2017.

    Google Scholar 

  61. Cervantes JL, et al. TLR8: the forgotten relative revindicated. Cell Mol Immunol. 2012;9:434.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ferris RL, Saba NF, Gitlitz BJ, et al. Effect of adding motolimod to standard combination chemotherapy and cetuximab treatment of patients with squamous cell carcinoma of the head and neck: the Active8 Randomized Clinical Trial. JAMA Oncol. 2018;4:1583–8. https://doi.org/10.1001/jamaoncol.2018.1888.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ferris RL, et al. A phase 1b study of neoadjuvant immune biomarker modulation with cetuximab and motolimod in head and neck cancer (HNC). Int J Radiat Oncol Biol Phys. 2016;94(4):867–8.

    Article  Google Scholar 

  64. Garlapow M. Motolimod plus cetuximab proves efficacious in head and neck cancer. Target Oncol. 2016; https://www.targetedonc.com/news/motolimod-plus-cetuximab-efficacious-head-and-neck-cancer. Accessed 19 Aug 2018.

  65. Cohen E, et al. Abstract CT098: phase Ib/II, open label, multicenter study of intratumoral SD-101 in combination with pembrolizumab in anti-PD-1 treatment naïve patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC). Cancer Res. 2018;78(13 Suppl):CT098.

    Google Scholar 

  66. Woo S-R, Fuertes MB, Corrales L, et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity. 2014;41(5):830–42. https://doi.org/10.1016/j.immuni.2014.10.017.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Demaria O, De Gassart A, Coso S, et al. STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity. Proc Natl Acad Sci U S A. 2015;112(50):15408–13. https://doi.org/10.1073/pnas.1512832112.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Baird JR, Bell RB, Troesch V, Friedman D, Bambina S, Kramer G, Blair T, Medler T, Wu Y, Sun Z, de Gruijl T, van de Ven R, Leidner RS, Crittenden MR, Gough MJ. Evaluation of explant responses to STING ligands: personalized immunosurgical therapy for head and neck squamous cell carcinoma. Cancer Res. 2018;78(21):6308–19.

    Article  PubMed  Google Scholar 

  69. Church SE, et al. Multiple vaccinations: friend or foe. Cancer J. 2011;17(5):379.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Ilyas S, Yang JC. Landscape of tumor antigens in T cell immunotherapy. J Immunol. 2015;195(11):5117–22.

    Article  PubMed  Google Scholar 

  71. Kantoff PW, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363(5):411–22.

    Article  PubMed  Google Scholar 

  72. Page DB, et al. Glimpse into the future: harnessing autophagy to promote anti-tumor immunity with the DRibbles vaccine. J Immunother Cancer. 2016;4(1):25.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ferris RL, et al. Phase I dendritic cell p53 peptide vaccine for head and neck cancer. Clin Cancer Res. 2014;2014:2617.

    Google Scholar 

  74. Voskens CJ, Sewell D, Hertzano R, et al. Induction of MAGE-A3 and HPV-16 immunity by Trojan vaccines in patients with head and neck carcinoma. Head Neck. 2012;34(12):1734–46. https://doi.org/10.1002/hed.22004.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Yoshitake Y, et al. Phase II clinical trial of multiple peptide vaccination for advanced head and neck cancer patients revealed induction of immune responses and improved OS. Clin Cancer Res. 2014;2014:0202.

    Google Scholar 

  76. Chindavijak S, Har-Noy M, Lausoontornsiri W. Effect of therapeutic vaccine on CTLA4 and tumor debulking response in recurrent and metastatic HNSCC. Clin Cancer Res. 2018;36(5 Suppl):115.

    Google Scholar 

  77. Yu G, et al. Combinational immunotherapy with Allo-DRibble vaccines and anti-OX40 co-stimulation leads to generation of cross-reactive effector T cells and tumor regression. Sci Rep. 2016;6:37558.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Redeker A, Arens R. Improving adoptive T cell therapy: the particular role of T cell costimulation, cytokines, and post-transfer vaccination. Front Immunol. 2016;7:345.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science. 2015;348(6230):62–8.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Iovance biotherapeutics announces preliminary phase 2 data for TIL Treatment in head and neck and cervical cancers. 2018. http://ir.iovance.com/phoenix.zhtml?c=254507&p=irol-newsArticle&ID=2328242.

  81. Leidner R, et al. A phase 2, multicenter study to evaluate the efficacy and safety of autologous tumor infiltrating lymphocytes (LN-145) for the treatment of patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck (HNSCC). J Clin Oncol. 2018;36:TPS6096.

    Article  Google Scholar 

  82. Papa S, et al. A phase I trial of T4 CAR T-cell immunotherapy in head and neck squamous cancer (HNSCC). J Clin Oncol. 2018;36:3046.

    Article  Google Scholar 

  83. Pikor L, Bell JC, Kaufman HL. Oncolytic viruses. In: Butterfield LH, Kaufman HL, Marincola FM, editors. Cancer immunotherapy principles and practice. New York, NY: Demos LLC; 2017.

    Google Scholar 

  84. Yaghchi CA, Zhang Z, Alusi G, Lemoine NR, Wang Y. Vaccinia virus, a promising new therapeutic agent for pancreatic cancer. Immunotherapy. 2015;7(12):1249–58. https://doi.org/10.2217/imt.15.90.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Harrington KJ, Hingorani M, Tanay MA, Hickey J, Bhide SA, Clarke PM, Renouf LC, et al. Phase I/II study of oncolytic HSVGM-CSF in combination with radiotherapy and cisplatin in untreated stage III/IV squamous cell cancer of the head and neck. Clin Cancer Res. 2010;16(15):4005. https://doi.org/10.1158/1078-0432.CCR-10-0196.

    Article  PubMed  Google Scholar 

  86. Harrington KJ, et al. Safety and preliminary efficacy of talimogene laherparepvec (T-VEC) in combination (combo) with pembrobrolizumab (Pembro) in patients (pts) with recurrent or metastatic squamous cell carcinoma of the head and neck (R/M HNSCC): a multicenter, phase 1b study (MASTERKEY-232). J Clin Oncol. 2018;36(Suppl):abstr 6036.

    Article  Google Scholar 

  87. Gildener-Leapman N, et al. A phase I trial of intratumoral administration of HF10 in patients with refractory superficial cancer: immune correlates of virus injection. J Clin Oncol. 2013;31(15 Suppl):3099. https://doi.org/10.1200/jco.2013.31.15_suppl.3099.

    Article  Google Scholar 

  88. Andtbacka, Robert HI, et al. Final results of a phase II multicenter trial of HF10, a replication-competent HSV-1 oncolytic virus, and ipilimumab combination treatment in patients with stage IIIB-IV unresectable or metastatic melanoma. Abstract 166420. Presented at: American Society of Clinical Oncology Annual Meeting, 20 May 2017, Chicago, IL.

    Google Scholar 

  89. Usami Y, Ishida K, Sato S, Kishino M, Kiryu M, Ogawa Y, Okura M, Fukuda Y, Toyosawa S. Intercellular adhesion molecule-1 (ICAM-1) expression correlates with oral cancer progression and induces macrophage/cancer cell adhesion. Int J Cancer. 2013;133(3):568–78. https://doi.org/10.1002/ijc.28066.

    Article  PubMed  Google Scholar 

  90. Mell LK, et al. Phase I trial of intravenous attenuated vaccinia virus (GL-ONC1) with concurrent chemoradiotherapy (CRT) for locoregionally advanced head and neck carcinoma. J Clin Oncol. 2015;33:–6026.

    Article  Google Scholar 

  91. Xia Z-J, et al. Phase III randomized clinical trial of intratumoral injection of E1B gene-deleted adenovirus (H101) combined with cisplatin-based chemotherapy in treating squamous cell cancer of head and neck or esophagus. Chin J Cancer. 2004;23(12):1666–70.

    Google Scholar 

  92. Garber K. China approves world’s first oncolytic virus therapy for cancer treatment. J Natl Cancer Inst. 2006;98(5):298–300. https://doi.org/10.1093/jnci/djj111.

    Article  PubMed  Google Scholar 

  93. Oncolytics Biotech Inc. Announces additional data from REO 018 randomized study of REOLYSIN in head and neck cancers. Calgary Oncol Biotech. 2014; https://www.oncolyticsbiotech.com/press-releases/detail/308/oncolytics-biotech-inc-announces-additional-data-from. Accessed 19 Aug 2018.

  94. Oncolytics Biotech Inc. Website studies current development plan. https://www.oncolyticsbiotech.com/clinical-trials/studies. Accessed 19 Aug 2018.

  95. Kroemer G, et al. Immunogenic cell death in cancer therapy. Annu Rev Immunol. 2013;31:51–72. https://doi.org/10.1146/annurev-immunol-032712-100008.

    Article  PubMed  Google Scholar 

  96. Tran L, et al. Cisplatin alters antitumor immunity and synergizes with PD-1/PD-L1 inhibition in head and neck squamous cell carcinoma. Cancer Immunol Res. 2017;5(12):1141–51.

    Article  PubMed  PubMed Central  Google Scholar 

  97. The ASCO Post. KEYNOTE-048: pembrolizumab monotherapy in head and neck squamous cell carcinoma. 2018. http://www.ascopost.com/News/59121. Accessed 8 Aug 2018.

  98. Van Limbergen EJ, De Ruysscher DK, Olivo Pimentel V, et al. Combining radiotherapy with immunotherapy: the past, the present and the future. Br J Radiol. 2017;90(1076):20170157. https://doi.org/10.1259/bjr.20170157.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Illidge T, et al. Radiation therapy induces an adaptive upregulation of PD-L1 on tumor cells which may limit the efficacy of the anti-tumor immune response but can be circumvented by anti-PD-L1. Int J Rad Oncol. 2014;90(1):S776.

    Article  Google Scholar 

  100. McBride SM, et al. A phase II randomized trial of nivolumab with stereotactic body radiotherapy (SBRT) versus nivolumab alone in metastatic (M1) head and neck squamous cell carcinoma (HNSCC). J Clin Oncol. 2018;36(Suppl):abstr 6009.

    Article  Google Scholar 

  101. Gong J, et al. Radiation therapy and PD-1/PD-L1 blockade: the clinical development of an evolving anticancer combination. J Immunother Cancer. 2018;6(1):46.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Ferris RL, et al. Rationale for combination of therapeutic antibodies targeting tumor cells and immune checkpoint receptors: harnessing innate and adaptive immunity through IgG1 isotype immune effector stimulation. Cancer Treat Rev. 2018;63:48–60.

    Article  PubMed  Google Scholar 

  103. Sacco AG et al. An open-label, non-randomized, multi-arm, phase II trial evaluating pembrolizumab combined with cetuximab in patients with recurrent/metastatic (R/M) head and neck squamous cell carcinoma (HNSCC): results of the interim safety analysis. ASCO 2018 meeting abstract. http://abstracts.asco.org/214/AbstView_214_225517.html

  104. Kato Y, et al. Abstract A92: effects of lenvatinib on tumor-associated macrophages enhance antitumor activity of PD-1 signal inhibitors. Mol Cancer Ther. 2015;14(12 Suppl 2):A92.

    Google Scholar 

  105. Taylor MH, et al. A phase 1b/2 trial of lenvatinib plus pembrolizumab in patients with squamous cell carcinoma of the head and neck. J Clin Oncol. 2018;36:6016.

    Article  Google Scholar 

  106. Ferris RL, et al. LBA46. An open-label, multicohort, phase 1/2 study in patients with virus-associated cancers (CheckMate 358): safety and efficacy of neoadjuvant nivolumab in squamous cell carcinoma of the head and neck (SCCHN). Ann Oncol. 28(Suppl_5):mdx440.041. https://doi.org/10.1093/annonc/mdx440.041.

  107. Financial Times. Calling time on the immunotherapy gold rush. Financial Times. 2017.

    Google Scholar 

  108. Kolata G. A cancer conundrum: too many drug trials, too few patients. The New York Times. https://www.nytimes.com/2017/08/12/health/cancer-drug-trials-encounter-a-problem-too-few-patients.html. Accessed 5 Sep 2017.

  109. Medicines in development for immuno-oncology 2017 Report. PhRMA.org. 2017. https://www.phrma.org/medicines-in-development-immuno-oncology. Accessed 20 Aug 2018.

  110. Jochems C, et al. The IDO1 selective inhibitor epacadostat enhances dendritic cell immunogenicity and lytic ability of tumor antigen-specific T cells. Oncotarget. 2016;7(25):37762.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Ma SR, et al. Blockade of adenosine A2A receptor enhances CD8(+) T cells response and decreases regulatory T cells in head and neck squamous cell carcinoma. Mol Cancer. 2017;16(1):99.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Antonioli L, et al. Anti-CD73 in cancer immunotherapy: awakening new opportunities. Trends Cancer. 2016;2(2):95–109.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Vela M, et al. Chemokine receptor-specific antibodies in cancer immunotherapy: achievements and challenges. Front Immunol. 2015;6:12.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Weed DT, Vella JL, Reis IM, et al. Tadalafil reduces myeloid-derived suppressor cells and regulatory T cells and promotes tumor immunity in patients with head and neck squamous cell carcinoma. Clin Cancer Res. 2015;21(1):39–48. https://doi.org/10.1158/1078-0432.CCR-14-1711.

    Article  PubMed  Google Scholar 

  115. Gomez-Roca CA, Cassier PA, Italiano A, Cannarile M, Ries C, Brillouet A, Mueller C, Jegg AM, Meneses-Lorente G, Baehner M, et al. Phase I study of RG7155, a novel anti-CSF1R antibody, in patients with advanced/metastatic solid tumors. J Clin Oncol. 2015;33:3005.

    Article  Google Scholar 

  116. Beldi-Ferchiou A, Caillat-Zucman S. Control of NK cell activation by immune checkpoint molecules. Int J Mol Sci. 2017;18:2129.

    Article  PubMed Central  Google Scholar 

  117. Cohen RB, Salas S, Even C, Kotecki N, Jimeno A, Soulié AM, Tirouvanziam-Martin A, Zerbib R, André P, Boyer-Chammard A, Fayette J. Abstract 5666: safety of the first-in-class anti-NKG2A monoclonal antibody monalizumab in combination with cetuximab: a phase Ib/II study in recurrent or metastatic squamous cell carcinoma of the head and neck (R/M SCCHN). Cancer Res. 2017;77(13 Suppl):5666. https://doi.org/10.1158/1538-7445.AM2017-5666.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Bryan Bell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Couey, M.A., Leidner, R.S., Young, S.W., Bell, R.B. (2020). Immunotherapy in Oral Cancer: A Fourth Dimension of Cancer Treatment. In: Kademani, D. (eds) Improving Outcomes in Oral Cancer. Springer, Cham. https://doi.org/10.1007/978-3-030-30094-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30094-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30093-7

  • Online ISBN: 978-3-030-30094-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics