Skip to main content

Dynamic Analysis and Motion Simulation of the 3 DOFs Waist Mechanism for Humanoid Robots

  • Conference paper
  • First Online:
Robotics and Mechatronics (ISRM 2019)

Abstract

The paper presents the dynamic analysis and motion simulation of the waist mechanism meant for humanoids. The proposed waist mechanism has a total of 3 DOFs, allowing movements of the robot’s upper trunk around the pitch, roll and yaw axes. Within the dynamic analysis, the decomposition of the waist mechanism is performed and for each link of the mechanism, motion equations are formed. Reactions in the mechanism links are determined by using D’Alembert’s principle and based on those, the equations for calculating of the driving forces are defined. Finally, the dynamic model of the waist mechanism was formed and a motion simulation for several scenarios was performed. Based on the analysis of the results, it was concluded that the waist mechanism requires small driving torques and therefore less and cheaper actuators, which is an important advantage of this solution.

Waist mechanism presented in this paper is patent pending.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Or, J.: Humanoids grow a spine: the effect of lateral spinal motion on the mechanical energy efficiency. IEEE Robot. Autom. Mag. 20(2), 71–81 (2013)

    Article  Google Scholar 

  2. Penčić, M.M., et al.: Development of the multi-segment lumbar spine for humanoid robots. Therm. Sci. 20(suppl. 2), S581–S590 (2016)

    Article  Google Scholar 

  3. Penčić, M., et al.: Drive system of the robot eyeballs and eyelids with 8 DOFs. In: Doroftei, I., Oprisan, C., Pisla, D., Lovasz, E.-C. (eds.) New Advances in Mechanism and Machine Science: SYROM 2017. MMS, vol. 57, pp. 47–56. Springer, Cham (2018)

    Chapter  Google Scholar 

  4. Penčić, M., et al.: Social humanoid robot SARA: development and realization of the shrug mechanism. In: Gasparetto, A., Ceccarelli, M. (eds.) Mechanism Design for Robotics: MEDER 2018. MMS, vol. 66, pp. 369–377. Springer, Cham (2019)

    Chapter  Google Scholar 

  5. Penčić, M., et al.: Social humanoid robot SARA: development of the wrist mechanism. IOP Conf. Ser.: Mater. Sci. Eng. 294(1), 012079-1–012079-10 (2017)

    Article  Google Scholar 

  6. Pearsall, D.J., et al.: Segmental inertial parameters of the human trunk as determined from computed tomography. Ann. Biomed. Eng. 24(2), 198–210 (1996)

    Article  Google Scholar 

  7. Penčić, M., et al.: A novel 3 DOFs waist mechanism for humanoid robots: kinematic analysis and motion simulation. In: Uhl, T. (ed.) Advances in Mechanism and Machine Science: 15th IFToMM World Congress. Springer (2019, accepted for publication)

    Google Scholar 

  8. Meghdari, A., et al.: Arash: a social robot buddy to support children with cancer in a hospital environment. Proc. I. Mech. Eng. H. 232(6), 605–618 (2018)

    Article  Google Scholar 

  9. Shigemi, S., et al.: Development of new ASIMO – realization of autonomous machine. Honda R&D Tech. Rev. 24(1), 37–45 (2012)

    Google Scholar 

  10. Tsagarakis, N.G., et al.: Compliant humanoid COMAN: optimal joint stiffness tuning for modal frequency control. In: Proceedings of the IEEE International Conference on Robotics and Automation, ICRA 2013, pp. 673–678. IEEE Press (2013)

    Google Scholar 

  11. Kim, M., et al.: Disturbance observer based linear feedback controller for compliant motion of humanoid robot. In: Proceedings of the International Conference on Robotics and Automation, ICRA 2018, pp. 403–410. IEEE Press (2018)

    Google Scholar 

  12. Kim, M., et al.: Team SNU’s control strategies for enhancing a robot’s capability: lessons from the 2015 DARPA Robotics Challenge Finals. J. Field. Robot. 34(2), 359–380 (2017)

    Article  Google Scholar 

  13. Ko, T., et al.: Key design parameters of a few types of electro-hydrostatic actuators for humanoid robots. Adv. Robot. 32(23), 1241–1252 (2018)

    Article  Google Scholar 

  14. Kaneko, K., et al.: Humanoid robot HRP-5P: an electrically actuated humanoid robot with high-power and wide-range joints. IEEE Robot. Autom. Lett. 4(2), 1431–1438 (2019)

    Article  Google Scholar 

  15. Park, H.A., et al.: Closed-form inverse kinematic position solution for humanoid robots. Int. J. Hum. Robot. 9(3), 1250022-1–1250022-28 (2012)

    Article  Google Scholar 

  16. Lohmeier, S., et al.: System design and control of anthropomorphic walking robot LOLA. IEEE-ASME Trans. Mech. 16(9), 658–666 (2009)

    Article  Google Scholar 

  17. Kim, K.G., et al.: Providing services using network-based humanoids in a home environment. IEEE Trans. Consum. Electr. 57(4), 1628–1636 (2011)

    Article  Google Scholar 

  18. Tellez, R., et al.: Reem-B: an autonomous lightweight human-size humanoid robot. In: Proceedings of the 8th IEEE-RAS International Conference on Humanoid Robots, Humanoids 2008, pp. 462–468. IEEE Press (2009)

    Google Scholar 

  19. Erbatur, K., et al.: SURALP: a new full-body humanoid robot platform. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009, pp. 4949–4954. IEEE Press (2009)

    Google Scholar 

  20. Englsberger, J., et al.: Overview of the torque-controlled humanoid robot TORO. In: Proceedings of the 14th IEEE-RAS International Conference on Humanoid Robots, Humanoids 2014, pp. 916–923. IEEE Press (2015)

    Google Scholar 

  21. Tsagarakis, N.G., et al.: WALK-MAN: A high-performance humanoid platform for realistic environments. J. Field. Robot. 34(7), 1225–1259 (2017)

    Article  Google Scholar 

  22. Tiejun, Z., et al.: The development of a mobile humanoid robot with varying joint stiffness waist. In: Proceedings of the IEEE International Conference Mechatronics and Automation, ICMA 2005, pp. 1402–1407. IEEE Press (2006)

    Google Scholar 

  23. Penčić, M., et al.: Development of the low backlash planetary gearbox for humanoid robots. FME Trans. 45(1), 122–129 (2017)

    Article  Google Scholar 

  24. HIWIM catalog: Motion Control & Systems – Ballscrews & Accessories, p. 38 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Penčić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Penčić, M., Brkić, B., Čavić, M., Rackov, M. (2020). Dynamic Analysis and Motion Simulation of the 3 DOFs Waist Mechanism for Humanoid Robots. In: Kuo, CH., Lin, PC., Essomba, T., Chen, GC. (eds) Robotics and Mechatronics. ISRM 2019. Mechanisms and Machine Science, vol 78. Springer, Cham. https://doi.org/10.1007/978-3-030-30036-4_6

Download citation

Publish with us

Policies and ethics