Skip to main content

Dynamic Failure of Pure Tungsten Carbide Under Simultaneous Compression and Shear Plate Impact Loading

  • Conference paper
  • First Online:
Book cover Dynamic Behavior of Materials, Volume 1

Abstract

In this paper, we present the results from a series of plate impact experiments designed to study dynamic response of commercial 99.6% purity tungsten carbide (WC) under simultaneous compression-and-shear stress wave loading. The symmetric oblique plate-impact experiments are conducted using progressively increasing angles of inclination (5°, 10°, and 22°). The longitudinal and transverse components of the measured particle velocity history at the free surface of the target plate in experiments with inclination angles of up to 10° and impact velocities ~100 m/s coincide well with their corresponding elastic particle velocity predictions. However, the normal particle velocity profiles for experiments conducted at an oblique impact angle of 22° are markedly different and exhibit a sudden increase in particle velocity from their plateau levels reminiscent of failure waves observed by other investigators in soda lime glass and silicon carbide (SIC-B). The increase in normal particle velocity (recompression/re-acceleration signal) in the shocked state of the target and the relatively large undulations present in the measured transverse particle velocity profiles are indicative of heterogeneous dynamic brittle failure processes in WC under the simple-shear state of stress, and are used to provide estimates for the critical range of pure-shear (tensile) loading that can initiate catastrophic failure in pure WC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Appleby-Thomas, G., et al.: Shock propagation in a cemented tungsten carbide. J. Appl. Phys. 105(6), 064916 (2009)

    Article  Google Scholar 

  2. Zhu, D., Kriven, W.M.: Advances in Ceramic Armor: A Collection of Papers Presented at the 29th International Conference on Advanced Ceramics and Composites, Jan 23–28, 2005, Cocoa Beach, FL, vol. 296. John Wiley & Sons, Hoboken (2009)

    Google Scholar 

  3. Yadav, S., Ramesh, K.: The mechanical properties of tungsten-based composites at very high strain rates. Mater. Sci. Eng. A. 203(1–2), 140–153 (1995)

    Article  Google Scholar 

  4. Grady, D.: Impact failure and fragmentation properties of tungsten carbide. Int. J. Impact Eng. 23(1), 307–317 (1999)

    Article  Google Scholar 

  5. Kurlov, A.S., Gusev, A.I.: Tungsten carbides. Springer Series Materials Science. 184, 34–36 (2013)

    Google Scholar 

  6. Kosolapova, T.Y.: Carbides: properties, production, and applications. Springer Science & Business Media, Berlin (2012)

    Google Scholar 

  7. Prakash, V.: Time-resolved friction with applications to high speed machining: experimental observations. Tribol. Trans. 41(2), 189–198 (1998)

    Article  Google Scholar 

  8. Frutschy, K., Clifton, R.: High-temperature pressure-shear plate impact experiments using pure tungsten carbide impactors. Exp. Mech. 38(2), 116–125 (1998)

    Article  Google Scholar 

  9. Yuan, F., Prakash, V., Lewandowski, J.J.: Shear yield and flow behavior of a zirconium-based bulk metallic glass. Mech. Mater. 42(3), 248–255 (2010)

    Article  Google Scholar 

  10. Grunschel, S., Clifton, R.J., Jiao, T.: Shearing resistance of aluminum at high strain rates and at temperatures approaching melt. in AIP Conference Proceedings. AIP, College Park (2012)

    Google Scholar 

  11. Yuan, F.P., Prakash, V., Lewandowski, J.J.: Spall strength of a zirconium-based bulk metallic glass under shock-induced compress ion-and-shear loading. Mech. Mater. 41(7), 886–897 (2009)

    Article  Google Scholar 

  12. Prakash, V., Yuan, F.: Results of a pilot study to investigate the feasibility of using new experimental techniques to measure sliding resistance at seismic slip rates. EOS Trans. AGU Fall Meeting Suppl. 85(47), 435 (2004)

    Google Scholar 

  13. Exner, H.: Physical and chemical nature of cemented carbides. Int. Met. Rev. 24(1), 149–173 (1979)

    Article  Google Scholar 

  14. Samsonov, G.V.: Refractory carbides. Consultants Bureau, New York (1974)

    Book  Google Scholar 

  15. Storms, E.K.: The refractory carbides. Academic, New York (1967)

    Google Scholar 

  16. Marsh, S.P.: LASL Shock Hugoniot data, vol. 5. Univ of California Press, Berkeley (1980)

    Google Scholar 

  17. Grady, D.E., Moody, R.L.: Shock compression profiles in ceramics. Sandia National Labs, Albuquerque, NM (1996)

    Book  Google Scholar 

  18. Lee, H.-C., Gurland, J.: Hardness and deformation of cemented tungsten carbide. Mater. Sci. Eng. 33(1), 125–133 (1978)

    Article  Google Scholar 

  19. Millett, J., Bourne, N., Dandekar, D.: Lateral stress measurements and shear strength in shock loaded tungsten carbide. J. Appl. Phys. 96(7), 3727–3732 (2004)

    Article  Google Scholar 

  20. Bolton, J., Redington, M.: Plastic deformation mechanisms in tungsten carbide. J. Mater. Sci. 15(12), 3150–3156 (1980)

    Article  Google Scholar 

  21. Prakash, V., Clifton, R.J.: Experimental and analytical investigation of dynamic fracture under conditions of plane strain. in Fracture Mechanics: Twenty-Second Symposium, (1990)

    Google Scholar 

  22. Liou, N.-S., Okada, M., Prakash, V.: Formation of molten metal films during metal-on-metal slip under extreme interfacial conditions. J. Mech. Phys. Solids. 52(9), 2025–2056 (2004)

    Article  Google Scholar 

  23. Yuan, F., Liou, N.-S., Prakash, V.: High-speed frictional slip at metal-on-metal interfaces. Int. J. Plast. 25(4), 612–634 (2009)

    Article  Google Scholar 

  24. Tsai, L., Prakash, V.: Structure of weak shock waves in 2-D layered material systems. Int. J. Solids Struct. 42(2), 727–750 (2005)

    Article  Google Scholar 

  25. Prakash, V., Clifton, R.J.: Experimental and Analytical Investigations of Dynamic Fracture under Conditions of Plane-Strain. In: Ernst, H.A., Saxena, A., McDowell, D.A. (eds.) Fracture Mechanics: Twenty Second Symposium (vol. 1) ASTM STP 1131, pp. 412–444. American Society of Testing Materials, Philadelphia, PA (1992)

    Google Scholar 

  26. Zuanetti, B., Wang, T., Prakash, V.: A compact fiber optics-based heterodyne combined normal and transverse displacement interferometer. Rev. Sci. Instrum. 88(3), 033108 (2017)

    Article  Google Scholar 

  27. Zuanetti, B., Wang, T., Prakash, V.: A Novel Approach for Plate Impact Experiments to Obtain Properties of Materials Under Extreme Conditions. In: Dynamic Behavior of Materials, vol. 1, pp. 19–26. Springer, Berlin (2019)

    Google Scholar 

  28. Bless, S.J., et al.: Failure waves in glass. J. Am. Ceram. Soc. 75(4), 1002–1004 (1992)

    Article  Google Scholar 

  29. Dandekar, D.P., Beaulieu, D.: Failure wave under shock wave compression in soda-lime glass. In: Murr, L.E., Staudhammer, K.P., Meyers, M.A. (eds.) Mettalurgical and Materials Applications of Shock wave and High Strain Rate Phenomena, pp. 211–218. Elsevier, New York (1995)

    Google Scholar 

  30. Dandekar, D.P.: Spall strength of silicon carbide under normal and simultaneous compression-shear shock wave loading. Int. J. Appl. Ceram. Technol. 1(3), 261–268 (2004)

    Article  Google Scholar 

  31. Zuanetti, B., Wang, T., Prakash, V.: Plate impact investigation of the dynamic response of commercial tungsten carbide under shock-induced compression and combined compression-and-shear loading. Int. J. Imp. Eng. Manuscript sumbitted for publication, (2019)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of the U.S. Department of Energy through the Stewardship Science Academic Alliance (DE-NA0001989 and DE-NA0002919) in conducting the present research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Prakash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zuanetti, B., Wang, T., Prakash, V. (2020). Dynamic Failure of Pure Tungsten Carbide Under Simultaneous Compression and Shear Plate Impact Loading. In: Lamberson, L. (eds) Dynamic Behavior of Materials, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-030-30021-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30021-0_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30020-3

  • Online ISBN: 978-3-030-30021-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics