Skip to main content

Imaging of the Scattering of High-Intensity Focused Ultrasonic Waves at Artificial Bone Replicas

  • Conference paper
  • First Online:
  • 391 Accesses

Abstract

High-intensity focused ultrasound is a technology currently used to treat bodily tissue for various medical purposes. For example, it has been applied for tissue ablation as a treatment for prostate cancer. However, the effective targeting of tissue deeper inside the body remains challenging because bones obstruct and scatter ultrasonic waves, which reduces the energy transmission to the desired location. Thus, understanding wave-scattering effects on focal point location and intensity is crucial for the expansion of the technology. Previous ultrasound visualization studies have not examined these effects in detail, especially for curved bone geometries.

Hence, in this work, the effects of bones on the transmission of focused ultrasound is investigated for hollow and solid cylindrical bone geometries. In laboratory experiments, images of wave fields are captured using shadowgraph techniques. The method uses a pulsed laser synced with a CMOS camera. Ultrasonic waves cause periodic local changes in density of the water, producing bright and dark patterns of laser transmission corresponding to the wave peaks and troughs. Improvements in the experimental setup and image processing compared to previous work allow for an expansion of the field of view with higher contrast. The bone replicas scatter the ultrasonic wave field and the effect of obstruction on ultrasound focal point intensities is quantified using pixel intensity measurements. In addition to visualization, differences in the pressure fields are recorded using a hydrophone and compared to the results obtained from the shadowgraph images. This experimental work provides a reference for future research in medical ultrasound and has the potential to lead to the development of methods that optimize the targeting of tissue deep in the human body.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. G. Ter Haar, Therapeutic ultrasound. Eur. J. Ultrasound 9(1), 3–9 (1999). https://doi.org/10.1016/S0929-8266(99)00013-0

    Article  Google Scholar 

  2. J.E. Kennedy, High-intensity focused ultrasound in the treatment of solid tumours. Nat. Rev. Cancer 5(4), 321–327 (2005). https://doi.org/10.1038/nrc1591

    Article  Google Scholar 

  3. Y.-F. Zhou, High intensity focused ultrasound in clinical tumor ablation. World J. Clin. Oncol. 2(1), 8 (2011). https://doi.org/10.5306/wjco.v2.i1.8

    Article  Google Scholar 

  4. K. Ferrara, R. Pollard, M. Borden, Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annu. Rev. Biomed. Eng. 9, 415–447 (2007). https://doi.org/10.1146/annurev.bioeng.8.061505.095852

    Article  Google Scholar 

  5. S. Dromi, V. Frenkel, A. Luk, B. Traughber, M. Angstadt, M. Bur, J. Poff, J. Xie, S. K. Libutti, K. C. Li, et al., Pulsed-high intensity focused ultrasound and low temperature–sensitive liposomes for enhanced targeted drug delivery and antitumor effect. Clin. Cancer Res. 13(9), 2722–2727 (2007). https://doi.org/10.1158/1078-0432.CCR-06-2443

    Article  Google Scholar 

  6. Z. Wang, T. Komatsu, H. Mitsumura, N. Nakata, T. Ogawa, Y. Iguchi, M. Yokoyama, An uncovered risk factor of sonothrombolysis: substantial fluctuation of ultrasound transmittance through the human skull. Ultrasonics 77, 168–175 (2017). https://doi.org/10.1016/j.ultras.2017.02.012

    Article  Google Scholar 

  7. F. Feng, A. Mal, M. Kabo, J. C. Wang, Y. Bar-Cohen, The mechanical and thermal effects of focused ultrasound in a model biological material. J. Acoust. Soc. Am. 117(4), 2347–2355 (2005). https://doi.org/10.1121/1.1873372

    Article  Google Scholar 

  8. P.V. Yuldashev, W. Kreider, O.A. Sapozhnikov, N. Farr, A. Partanen, M.R. Bailey, V. Khokhlova, Characterization of nonlinear ultrasound fields of 2d therapeutic arrays, in Proceedings of IEEE International Ultrasonics Symposium, vol. 2012 (NIH Public Access, 2012), p. 1. https://doi.org/10.1109/ULTSYM.2012.0231

  9. D. Christensen, S. Almquist, Incorporating tissue absorption and scattering in rapid ultrasound beam modeling, in Energy-based Treatment of Tissue and Assessment VII, vol. 8584 (International Society for Optics and Photonics, 2013), p. 85840X. https://doi.org/0.1117/12.2008021

  10. P. Gélat, G. Ter Haar, N. Saffari, HIFU scattering by the ribs: constrained optimisation with a complex surface impedance boundary condition, in Journal of Physics: Conference Series, vol. 498 (IOP Publishing, Bristol, 2014), p. 012004. https://doi.org/10.1088/1742-6596/498/1/012004

    Google Scholar 

  11. J.K. Enholm, M.O. Kohler, B. Quesson, C. Mougenot, C.T. Moonen, S.D. Sokka, Improved volumetric MR-HIFU ablation by robust binary feedback control. IEEE Trans. Biomed. Eng. 57(1), 103–113 (2010). https://doi.org/10.1109/TBME.2009.2034636

    Article  Google Scholar 

  12. T. Long, V. Amin, S. McClure, R. Robert, L. Wu, R. Thompson, T. Ryken, P3C-8 Techniques for Real-Time Monitoring and Control for HIFU (High Intensity Focused Ultrasound) Ablationin Porcine Brains In Vitro Studies, in Proceeding of IEEE Ultrasonics Symposium, 2007 (IEEE, Piscataway, 2007), pp. 1788–1791. https://doi.org/10.1109/ULTSYM.2007.450

    Google Scholar 

  13. M. Brown, M. Safisamghabadi, C. Schaal, V. Durgesh, Visualization of the scattering of focused ultrasonic waves at solid-fluid interfaces. Proc. SPIE 10600, 10600–10610 (2018). https://doi.org/10.1117/12.2296744

    Google Scholar 

  14. R. Omura, Y. Shimazaki, S. Yoshizawa, S.-i. Umemura, Quantitative measurement of focused ultrasound pressure field using subtraction shadowgraph. Jpn. J. Appl. Phys. 50(7S), 07HC07 (2011). https://doi.org/10.1143/jjap.50.07hc07

    Article  Google Scholar 

  15. O. Saito, Z. Wang, H. Mitsumura, T. Ogawa, Y. Iguchi, M. Yokoyama, Substantial fluctuation of acoustic intensity transmittance through a bone-phantom plate and its equalization by modulation of ultrasound frequency. Ultrasonics 59, 94–101 (2015). https://doi.org/10.1016/j.ultras.2015.01.017

    Article  Google Scholar 

  16. C. Schaal, V. Durgesh, Investigation of the scattering of focused ultrasonic waves at bones, in Proceedings of the ASME International Mechanical Engineering Congress and Exposition—IMECE 2018, Pittsburgh (2018). https://doi.org/10.1115/IMECE2018-87133

  17. S. Harnof, Z. Zibly, L. Shay, O. Dogadkin, A. Hanannel, Y. Inbar, I. Goor-Aryeh, I. Caspi, Magnetic resonance-guided focused ultrasound treatment of facet joint pain: summary of preclinical phase. J. Ther. Ultrasound 2(1), 9 (2014). ISSN 2050-5736. https://doi.org/10.1186/2050-5736-2-9

    Article  Google Scholar 

  18. G. Settles, Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media (Springer, Berlin, 2001). ISBN 978-3-540-66155-9. https://doi.org/10.1007/978-3-642-56640-0

    Book  Google Scholar 

  19. G.S. Settles, M.J. Hargather, A review of recent developments in schlieren and shadowgraph techniques. Meas. Sci. Technol. 28(4), 042001 (2017). https://doi.org/10.1088/1361-6501/aa5748

    Article  Google Scholar 

  20. N. Kudo, H. Ouchi, K. Yamamoto, H. Sekimizu, A simple schlieren system for visualizing a sound field of pulsed ultrasound. J. Phys. Conf. Ser. 1, 146–149 (2004). https://doi.org/10.1088/1742-6596/1/1/033

    Article  Google Scholar 

  21. N. Kudo, A simple technique for visualizing ultrasound fields without schlieren optics. Ultrasound Med. Biol. 41(7), 2071–2081 (2015). https://doi.org/10.1016/j.ultrasmedbio.2015.03.004

    Article  Google Scholar 

  22. T. Neumann, H. Ermert, Schlieren visualization of utlrasonic waves with high spatial resolution. Ultrasonics 44, 1561–1566 (2006). https://doi.org/10.1016/j.ultras.2006.05.209

    Article  Google Scholar 

  23. N. Kudo, A simple technique for visualizing ultrasound fields without schlieren optics. Ultrasound Med. Biol. 41(7), 2071–2081 (2015). https://doi.org/10.1016/j.ultrasmedbio.2015.03.004

    Article  Google Scholar 

  24. M. Greenspan, C.E. Tschiegg, Tables of the speed of sound in water. J. Acoust. Soc. Am. 31(1), 75–76 (1959). https://doi.org/10.1121/1.1907614

    Article  Google Scholar 

Download references

Acknowledgements

The RF amplifier provided by Dr. Ajit Mal (UCLA) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brown, M., Sanford, D., Schaal, C. (2020). Imaging of the Scattering of High-Intensity Focused Ultrasonic Waves at Artificial Bone Replicas. In: Grady, M. (eds) Mechanics of Biological Systems and Materials & Micro-and Nanomechanics, Volume 4. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-030-30013-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30013-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30012-8

  • Online ISBN: 978-3-030-30013-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics