Skip to main content

Protein Conformational Changes and Low-Frequency Vibrational Modes: A Similarity Analysis

  • Conference paper
  • First Online:

Abstract

The study of protein vibration and dynamics is receiving increasing attention among researchers, both from a numerical and experimental perspective. By using terahertz spectroscopy techniques, it has been shown that conformational changes, crucial for protein biological function, are strictly related to low-frequency vibrational modes. These motions generally occur in the terahertz range (~0.1–2 THz) involving large portions of the protein. The present contribution aims at investigating the role of terahertz (expansion-contraction) vibrational modes to protein conformational change from a numerical viewpoint. Modal analysis is performed by using Cα-only coarse-grained mechanical models: the obtained mode shapes are compared, by means of three similarity indexes, to the displacement field of protein conformational change. In particular, lysine-arginine-ornithine (LAO) binding protein is selected as a case study.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. S.E. Lee, R.D. Kamm, M.R.K. Mofrad, A molecular perspective on mechanotransduction in focal adhesion, in Cellular mechanotransduction: diverse perspectives from molecules to tissues, ed. by M. R. K. Mofrad, R. D. Kamm, (Cambridge University Press, Cambridge, 2009)

    Google Scholar 

  2. S. Mahajan, Y.H. Sanejouand, On the relationship between low-frequency normal modes and large-scale conformational changes of proteins. Arch. Biochem. Biophys. 567, 59–65 (2015)

    Article  Google Scholar 

  3. A. Carpinteri, G. Lacidogna, G. Piana, A. Bassani, Terahertz mechanical vibrations in lysozyme: Raman spectroscopy vs modal analysis. J. Mol. Struct. 1139, 222–230 (2017)

    Article  Google Scholar 

  4. A. Carpinteri, G. Piana, A. Bassani, G. Lacidogna, Terahertz vibrational modes in Na/K-ATPase. J. Biomol. Struct. Dyn. 37, 256–264 (2019)

    Article  Google Scholar 

  5. G. Lacidogna, D. Scaramozzino, G. Piana, A. Carpinteri, Terahertz protein vibrations: The usefulness of coarse-grained numerical models. in: M.E. Grady (ed.), Mechanics of Biological Systems and Materials & Micro- and Nanomechanics, Volume 4, Conference Proceedings of the Society for Experimental Mechanics Series. https://doi.org/10.1007/978-3-030-30013-5_1

  6. K.G. Brown, S.C. Erfurth, E.W. Small, W.L. Peticolas, Conformationally dependent low-frequency motions of proteins by laser Raman spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 69, 1467–1469 (1972)

    Article  Google Scholar 

  7. G. Lacidogna, G. Piana, A. Bassani, A. Carpinteri, Raman spectroscopy of Na/K-ATPase with special focus on low-frequency vibrations. Vib. Spectrosc. 92, 298–301 (2017)

    Article  Google Scholar 

  8. D.A. Turton, H.M. Senn, T. Harwood, A.J. Lapthorn, E.M. Ellis, K. Wynne, Terahertz underdamped vibrational motion governs protein-ligand binding in solution. Nat. Commun. (2014). https://doi.org/10.1038/ncomms4999

  9. E. Castro-Camus, M.B. Johnston, Conformational changes of photoactive yellow protein monitored by terahertz spectroscopy. Chem. Phys. Lett. 455, 289–292 (2008)

    Article  Google Scholar 

  10. H. Chen, G.Y. Chen, S.Q. Li, L. Wang, Reversible conformational changes of PsbO protein detected by terahertz time-domain spectroscopy. Chin. Phys. Lett. 26, 084204 (2009)

    Article  Google Scholar 

  11. F. Tama, Y.H. Sanejouand, Conformational change of proteins arising from normal mode calculations. Protein Eng. 14, 1–6 (2001)

    Article  Google Scholar 

  12. W. Zheng, B.R. Brooks, Normal-mode-based prediction of protein conformational changes guided by distance constraints. Biophys. J. 88, 3109–3117 (2005)

    Article  Google Scholar 

  13. P. Petrone, V.S. Pande, Can conformational change be described by only a few normal modes? Biophys. J. 90, 1583–1593 (2006)

    Article  Google Scholar 

  14. Protein Data Bank. https://www.rcsb.org

  15. W. Humphrey, A. Dalke, K. Schulten, VMD–visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Scaramozzino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Scaramozzino, D., Lacidogna, G., Carpinteri, A. (2020). Protein Conformational Changes and Low-Frequency Vibrational Modes: A Similarity Analysis. In: Grady, M. (eds) Mechanics of Biological Systems and Materials & Micro-and Nanomechanics, Volume 4. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-030-30013-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30013-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30012-8

  • Online ISBN: 978-3-030-30013-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics