Skip to main content

Influence of Cell Wall Polysaccharides on Structure and Mechanics of Streptococcus mutans

  • Conference paper
  • First Online:
Book cover Mechanics of Biological Systems and Materials & Micro-and Nanomechanics, Volume 4

Abstract

Streptococcus mutans (S. mutans) is a group of cocci bacteria that highly contributes to oral decay. In cases of high potency, it can cause plaque build-up, impaired speech, difficulty chewing, and cavity formation, which contribute to over half of the dental visits in the United States. In severe cases where a biofilm develops on a dental implant, patients will experience pain, swelling, and potential loosening or loss of the titanium implant. S. mutans are also highly resistant to antibiotics, which makes the infections both persistent and difficult to treat. As poor oral hygiene continues to be a global epidemic, it is important to study and characterize the mechanics of the bacteria to develop therapeutic targets to alleviate S. mutans infections. One possible target is modifications of the cell wall. Recent literature suggests that alterations to the biosynthesis pathways of cell wall polysaccharides could lead to new opportunities for therapeutics. The cell wall of S. mutans is high-functioning and complex. It consists of multiple peptidoglycan layers, wall teichoic acid (WTA) containing surface glycopolymers, and a polysaccharide capsule. Using atomic force microscopy (AFM) in combination with fluorescent laser scanning confocal imaging, we compare cell wall deformation with mutants defective in WTA. Furthermore, scanning electron microscopy of both wild type S. mutans and mutant strains reveal differences in surface morphology. Our long-term goal is to determine mechanical and structural properties of bacterial cell walls that contribute to antibiotic resistance in order to preferentially regulate such properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.J. Edgar, V.P. van Hensbergen, A. Ruda, A.G. Turner, P. Deng, Y. Le Breton, N.M. El-Sayed, A.T. Belew, K.S. McIver, A.G. McEwan, A.J. Morris, G. Lambeau, M.J. Walker, J.S. Rush, K.V. Korotkov, G. Widmalm, N.M. van Sorge, N. Korotkova, Discovery of glycerol phosphate modification on streptococcal rhamnose polysaccharides. bioRxiv 337519 (2019)

    Google Scholar 

  2. R.D. Turner, S. Mesnage, J.K. Hobbs, S.J. Foster, Molecular imaging of glycan chains couples cell-wall polysaccharide architecture to bacterial cell morphology. Nat. Commun. 9(1), 1263 (2018)

    Article  Google Scholar 

  3. S.S. Schaus, E.R. Henderson, Cell viability and probe-cell membrane interactions of XR1 glial cells imaged by atomic force microscopy. Biophys. J. 73(3), 1205–1214 (1997)

    Article  Google Scholar 

  4. C. Formosa-Dague, R.E. Duval, E. Dague, et al., Semin. Cell Dev. Biol. 73, 165–176 (2018)

    Article  Google Scholar 

  5. S. Liu, Y. Wang, Application of AFM in microbiology: A review. Scanning 32(2), 61–73 (2010)

    Article  Google Scholar 

  6. V.D. Gordon, M. Davis-Fields, K. Kovach, C.A. Rodesney, Biofilms and mechanics: A review of experimental techniques and findings. J. Phys. D. Appl. Phys. 50(22), 223002 (2017)

    Article  Google Scholar 

  7. S.A. James, L.C. Powell, C.J. Wright, Atomic force microscopy of biofilms—Imaging, interactions, and mechanics. in Microbial Biofilms-Importance and Applications (InTech, 2016)

    Google Scholar 

  8. A. Cartagena, A. Raman, Local viscoelastic properties of live cells investigated using dynamic and quasi-static atomic force microscopy methods. Biophys. J. 106(5), 1033–1043 (2014)

    Article  Google Scholar 

  9. A. Beaussart, C. Pechoux, P. Trieu-Cuot, P. Hols, M.-Y. Mistou, Y.F. Dufrene, Molecular mapping of the cell wall polysaccharides of the human pathogen Streptococcus agalactiae. Nanoscale 6(24), 14820–14827 (2014)

    Article  Google Scholar 

  10. Y.J. Oh, B. Plochberger, M. Rechberger, P. Hinterdorfer, Characterizing the effect of polymyxin B antibiotics to lipopolysaccharide on Escherichia coli surface using atomic force microscopy. J. Mol. Recognit. 30(6), e2605 (2017)

    Article  Google Scholar 

  11. L. Chopinet, C. Formosa, M. Rols, R. Duval, E. Dague, Imaging living cells surface and quantifying its properties at high resolution using AFM in QI™ mode. Micron 48, 26–33 (2013)

    Article  Google Scholar 

  12. G. Smolyakov, C. Formosa-Dague, C. Severac, R. Duval, E. Dague, High speed indentation measures by FV, QI and QNM introduce a new understanding of bionanomechanical experiments. Micron 85, 8–14 (2016)

    Article  Google Scholar 

  13. E.P. Wojcikiewicz, X. Zhang, V.T. Moy, Force and compliance measurements on living cells using atomic force microscopy (AFM). Biol. Proced. Online 6(1), 1–9 (2004)

    Article  Google Scholar 

  14. L. Kailas, E. Ratcliffe, E. Hayhurst, M. Walker, S. Foster, J. Hobbs, Immobilizing live bacteria for AFM imaging of cellular processes. Ultramicroscopy 109(7), 775–780 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Department of Molecular and Cellular Biochemisty for use of bacterial culture equipment and materials. AFM and confocal microscopy were carried out in the UK Light Microscopy Core user facility. The facility provides access to and expertise in a wide range of advanced imaging instrumentation that include confocal, multiphoton, and super resolution microscopes. This work was also supported by an Igniting Research Collaboration Program at the University of Kentucky.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha E. Grady .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sandin, J.N., Korotkova, N., Grady, M.E. (2020). Influence of Cell Wall Polysaccharides on Structure and Mechanics of Streptococcus mutans . In: Grady, M. (eds) Mechanics of Biological Systems and Materials & Micro-and Nanomechanics, Volume 4. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-030-30013-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30013-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30012-8

  • Online ISBN: 978-3-030-30013-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics