Skip to main content

Abstract

This paper illustrate the use of deflectometry in the infrared spectrum to measure surface slopes on a plate deformed in bending.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnal, L., et al. (2017). Detecting dings and dents on specular car body surfaces based on optical flow. Journal of Manufacturing Systems, 45, 306–321.

    Article  MathSciNet  Google Scholar 

  2. Balzer, J., & Werling, S. (2010). Principles of shape from specular reflection. Measurement, 43(10), 1305–1317.

    Article  Google Scholar 

  3. Ligtenberg, F. K. (1954). A new experimental method for the determination of moments in small slab models. Proceedings of SESA XII, 2, 83–98.

    Google Scholar 

  4. Chiang, F. P., & Treiber, J. (1970). A note on Ligtenberg’s reflective moiré method—Technical note offers an additional improvement to the optical arrangement whereby the sensitivity of the method can be changed at will. Experimental Mechanics, 10(9), 537–538.

    Article  Google Scholar 

  5. Asundi, A. (1994). Novel techniques in reflection moiré. Experimental Mechanics, 34(3), 230–242.

    Article  Google Scholar 

  6. Surrel, Y., et al. (1999). Phase-stepped deflectometry applied to shape measurement of bent plates. Experimental Mechanics, 39(1), 66–70.

    Article  Google Scholar 

  7. Sciammarella, C. A., Trentadue, B., & Sciammarella, F. M. (2000). Measurement of bending stresses in shells of arbitrary shape using the reflection moire method. Experimental Mechanics, 40(3), 282–288.

    Article  Google Scholar 

  8. Syed-Muhammad, K., et al. (2008). Characterization of composite plates using the virtual fields method with optimized loading conditions. Composite Structures, 85(1), 70–82.

    Article  Google Scholar 

  9. Kim, J.-H., et al. (2009). Local stiffness reduction in impacted composite plates from full-field measurements. Composites Part A: Applied Science and Manufacturing, 40(12), 1961–1974.

    Article  Google Scholar 

  10. Devivier, C., Pierron, F., & Wisnom, M. (2012). Damage detection in composite materials using full-field slope measurements. Composites Part A: Applied Science and Manufacturing, 43(10), 1650–1666.

    Article  Google Scholar 

  11. Periasamy, C., & Tippur, H. V. (2013). A full-field reflection-mode digital gradient sensing method for measuring orthogonal slopes and curvatures of thin structures. Measurement Science and Technology, 24(2), 025202.

    Article  Google Scholar 

  12. Devivier, C., Pierron, F., & Wisnom, M. R. (2013). Impact damage detection in composite plates using deflectometry and the Virtual Fields Method. Composites Part A: Applied Science and Manufacturing, 48, 201–218.

    Article  Google Scholar 

  13. Devivier, C., Seghir, R., & Pierron, F. (2016). Deflectometry: full-field deformation measurements for composites NDT. In Advanced structural health management and composite structures (ASHMCS), 2016, Jeonju, Republic of Korea.

    Google Scholar 

  14. Devivier, C., et al. (2016). Time-resolved full-field imaging of ultrasonic Lamb waves using deflectometry. Experimental Mechanics, 56(3), 345–357.

    Article  Google Scholar 

  15. O’Donoughue, P., Robin, O., & Berry, A., (2018). Time-resolved identification of mechanical loadings on plates using the virtual fields method and deflectometry measurements. Strain, e12258–n/a.

    Google Scholar 

  16. Kaufmann, R., Ganapathisubramani, B., & Pierron, F. (2018). Full-field pressure reconstruction using deflectometry and the Virtual Fields Method. In 19th International Symposium on Applications of Laser and Imaging Techniques to Fluid Mechanics.

    Google Scholar 

  17. Sciammarella, C. A., & Piroozan, P. (2007). Real-time determination of fringe pattern frequencies: An application to pressure measurement. Optics and Lasers in Engineering, 45(5), 565–577.

    Article  Google Scholar 

  18. Surrel, Y., & Pierron, F. (Eds.). (2019). Deflectometry on curved surfaces. In 2018 SEM Conference ed. Conference Proceedings of the Society for Experimental Mechanics Series (Vol. 3). Berlin: Springer.

    Google Scholar 

  19. Ogilvy, J. A. (1991). Theory of wave scattering from random rough surfaces. Boca Raton: CRC Press.

    Book  Google Scholar 

  20. Kim, J.-H., et al. (2007). A procedure for producing reflective coatings on plates to be used for full-field slope measurements by a deflectometry technique. Strain, 43(2), 138–144.

    Article  Google Scholar 

  21. Horbach, J. W., & Kammel, S. (2005). Deflectometric inspection of diffuse surfaces in the far-infrared spectrum. In: Electronic imaging 2005. SPIE.

    Google Scholar 

  22. Höfer, S., Burke, J., & Heizmann, M. (2016). Infrared deflectometry for the inspection of diffusely specular surfaces. Advanced Optical Technologies, 5(5–6), 377.

    Google Scholar 

  23. Sarosi, Z., et al. (2010). Detection of surface defects on sheet metal parts by using one-shot deflectometry in the infrared range. In: InfraMation, Las Vegas, Nevada.

    Google Scholar 

  24. Kim, D. W., et al. (2016). Extremely large freeform optics manufacturing and testing. In: 2015 11th Conference on Lasers and Electro-Optics Pacific Rim, CLEO-PR 2015.

    Google Scholar 

  25. Su, T., et al. (2013). Measuring rough optical surfaces using scanning long-wave optical test system. 1. Principle and implementation. Applied Optics, 52(29), 7117–7126.

    Article  Google Scholar 

  26. Toniuc, H., & Pierron, F. (2019). Infrared deflectometry for surface slope deformation measurements. Experimental Mechanics. Accepted.

    Google Scholar 

  27. Grédiac, M., Sur, F., & Blaysat, B. (2016). The Grid Method for in-plane displacement and strain measurement: a review and analysis. Strain, 52(3), 205–243.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Devlin Hayduke from the Materials Sciences Corporation, Horsham, PA, USA for suggesting the idea, and to Dr. Yves Surrel for useful discussions on deflectometry and grid printing. Horea Toniuc acknowledges funding through the Excel Southampton Internship Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Pierron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Toniuc, H., Pierron, F. (2020). Infrared Deflectometry. In: Lin, MT., et al. Advancements in Optical Methods & Digital Image Correlation in Experimental Mechanics, Volume 3. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-030-30009-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30009-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30008-1

  • Online ISBN: 978-3-030-30009-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics