Skip to main content

Abstract

The method of thin-wall tube torsion to characterize metal’s shear response is well-known. Unfortunately, the thin wall tube specimen tends to buckle before reaching large shear deformation and failure. An alternative technique, which has rarely been considered, is Nadai’s surface stress method (Nadai, Theory of Flow and Fracture of Solids. McGraw-Hill, New York, 1950). It derives shear stress-strain curve from the torque-twist relationship of a solid bar. Although the analysis is more complex due to nonlinear shear stress distribution along the radius, the deformation is stable through large shear deformation to failure.

Solid bar torsion experiments were conducted to study large shear deformation of Al6061-T6. Two experiments were described in this study. Since few tests were available in the literature, these experiments were to explore the large deformation behaviors of an engineering alloy and the application of modern measurement techniques, such as 3D DIC method, under torsion. Results show during twisting, the surface shear strain distribution was uniform initially and then localized on a narrow band; eventually, the specimen was cracked and failed within the band. Depending on the specimen size, the twist could be greater than 360°. Details are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Nadai, Theory of Flow and Fracture of Solids, 3rd edn. (McGraw-Hill, New York, 1950)

    Google Scholar 

  2. H.C. Wu, Z. Xu, P.T. Wang, The shear stress-strain curve determination from torsion test in the large strain range. J. Test. Eval. 20, 396–402 (1992)

    Article  Google Scholar 

Download references

Acknowledgements

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525. The views expressed in the article do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Yang Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, WY., Jin, H., Foulk, J., Ostien, J. (2020). Solid Cylindrical Bar Torsion for Characterizing Shear Plastic Deformation and Failure. In: Silberstein, M., Amirkhizi, A., Shuman, X., Beese, A., Berke, R., Pataky, G. (eds) Challenges in Mechanics of Time Dependent Materials, Fracture, Fatigue, Failure and Damage Evolution, Volume 2. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-030-29986-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29986-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29985-9

  • Online ISBN: 978-3-030-29986-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics